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Abstract. This paper investigates the status of a transmission line (on/off) using a 140-bus Northeast 
Power Coordinating Council (NPCC) test system model [1]. The application of the software package 
ANDES [2] to obtain a database when solving this problem in the transient process of the power system is 
considered. The Deep Learning Neural Networks (DLNN) [3] were proposed to solve the problem, in 
particular, a convolutional neural network (CNN), the input variables of which are voltage and current 
phasors obtained from phasor measurement units (PMU). Calculations to determine the state of lines were 
performed using a program developed in the Julia language using the Flux package (a machine learning 
library that includes functions for creating CNN models). The results of the studies are presented. 

1 Introduction 
The task of detecting changes in a topology of an electric 
power system in transient states is one of most popular 
and complex tasks to be solved in the operational 
management of the power system. The electrical 
network topology is determined using information about 
the position of circuit breakers and disconnecting 
switches (open/closed), which is transmitted via 
telemechanics channels to the dispatch control centers. 
As a result of disturbances, this information can be 
distorted, leading to errors in determining connections of 
network components. Also sensors that transmit and 
receive information may be malfunctioning due to 
equipment failures or cyber attacks. 

Modern PMUs also provide a line state information 
(on/off) due to the telesignalization function 
implemented in them, but not placed in all buses of the 
power system PMUs do not allow to get information 
about the states of all lines. In this paper, this problem is 
solved using convolutional neural networks based on 
data measured by the PMUs. Deep neural networks are 
becoming one of the most popular machine learning 
techniques for creating artificial intelligence systems in 
various fields due to their enhanced performance and 
scalability. With respect to solving energy problems, 
DLNN methods are widely used for the detection of 
false data injection attacks [4-5], load forecasting [6], 
load modeling [7], fault location [8], detecting defects in 
damaged equipment due to short circuits [9], etc. 

There are various DLNN architectures (multilayer 
perceptron, neocognitron, autoencoders, convolutional 
neural networks, limited Boltzmann machine, deep trust 
networks, etc.). In this paper, a convolutional neural 
network based classifier, similar to the one developed 
earlier by the authors for the 14-bus electrical network 
[10], but focused on the 140-bus network, is used to 

detect changes in the topology of the 140-bus electrical 
network in real time. 

The remaining parts are organized as follows: 
Sections 2, 3, and 4 briefly describe the architecture of 
the convolutional neural network, the ANDES software 
package used  to obtain the database, and the 140-bus 
power system under study, respectively. Numerical 
results with the study of the influence of various factors 
on the accuracy of topology detection are given in 
Sections 5, 6. Then Section 7 concludes results and 
discusses future research. 

2 Convolutional Neural Networks 

To solve the problem of determining the change of line 
status in transient states, especially in the case of large 
volumes of input parameters, of all the above DLNN 
architectures the most suitable are CNNs. CNN receives 
input data, transforms them using a number of 
interrelated layers, and outputs a set of probabilities 
(estimates). The CNN architecture (Fig. 1) consists of 
three main groups of layers: 1) an input layer; 2) feature 
extraction layers; 3) classification layers. The input layer 
accepts 3D signals. Feature extraction layers have a 
repeating structure: convolution (filter)→ activation 
(ReLU)→ pooling. The convolution layer is a set of 
feature maps, which have a scanning kernel (filter). Fully 
connected layers are the layers of the usual multilayer 
perseptron, which determine the final classification 
decision. Gradient-based optimization method (error 
back-propagation algorithm) is used to trained CNN. A 
more detailed description of CNN is presented by the 
authors in [10]. 

The authors used the ANDES software package to 
obtain a database for the topology detection problem 
decision of a 140-bus test system. 
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Fig. 1. Convolutional neural network architecture. 
 

3 ANDES Software Package 

ANDES is a free open-source software package 
developed based on the Python programming language 
for modeling and numerical analysis of power system 
operation [2]. The package has a hybrid symbolic-
numeric structure for solving differential algebraic 
equations (DAEs) describing the energy system model 
[11]. 

The ANDES package allows you to develop abstract 
models in the symbolic layer independently of the test 
scheme. The computation time for processing equations 
depends on the number and complexity of model types, 
not on the number of devices in a particular test scheme. 

Thus, ANDES is much easier to use than other DAEs 
modeling tools for dynamic power system simulation 
while maintaining high computational efficiency: 
ANDES can perform a 20-second transient simulation of 
a 2000-bus system in a few seconds on an ordinary 
desktop computer. 

The ANDES calculations were performed by the 
authors in Google Colab, a free interactive cloud 
environment for working in Python. 

4 Investigated NPCC 140-bus System 

The 140-bus Northeast Power Coordinating Council 
(NPCC) system [1] is the equivalent of the Northeast 
Region of the Eastern Interconnection of the United 
States and Canada power system. 

The scheme under study is shown in Fig. 2. The 
system includes 48 generators, 233 lines and 92 load 
buses. In Fig. 2 the generator buses are shown as squares 
and the load buses as circles. The base bus (78) is shown 
as a triangle. 

As mentioned above, the implementation of the 
algorithm for detecting the topology of the electrical 
network uses the data transmitted by the PMU. In the 
NPCC scheme, the PMU is installed in 57 buses [12]. 

The database for solving the problem of determining 
the network topology are phasor measurements of 
voltage and current in the transient process, but the 
package ANDES in the calculation file of the necessary 
values provides only the values of the modulus and 
phase of the voltage in the buses. The following 
calculation formulas were used to determine the missing 
phasor current values in the branches: 

 
y =1/(r + jx),      (1) 

нI = ( нU - кU )× y +j0,5× нU × b,  (2)      

кI = ( кU - нU )× y +j0,5× кU × b,  (3) 

where 
нU - the bus voltage phasor at the beginning of the 

line, 
кU - the bus voltage phasor at the end of the line, r 

and x - respectively, the active and reactive resistances of 
the line, y - complex conductivity of the line, b - 
capacitive conductivity of the line, 

нI - the current phasor 
at the beginning of the line, кI - the current phasor at the 
end of the line. 

5 Numerical Experiments 

The data base, calculated with the ANDES package, 
includes 600 modes obtained by means of the load 
changes in all load buses in the range 75–125 percent of 
the base level and adding a random value equal to 0–20 
percent of the base load of the bus to the obtained values. 
For each bus, transient calculations associated with 
turning off one of the lines and turning it back on after 
three seconds with an auto-reclosing device have been 
performed. In the experiment, 100 lines turned off/in is 
considered (these lines are highlighted by a dotted line in 
Fig. 2). Half of the 600 calculated modes was used to 
train the CNN, and the other half was used for testing. 
Voltage and current measurement values were used with 
the addition of a random noise: the phase change of 
voltage by ±0.5o and the modulus change of current by 
±0.5%. The superposition of noise is due to the PMU 
errors and voltage and current instrument transformers. 

Calculations to determine the topology were 
performed using the program written in the Julia 
language using the Flux package. 

6 Influence of Various Factors on the 
Accuracy of Topology Change 
Detection 

Variants of the CNN input parameters. 10 variants of 
input parameters are considered. 

The first option consists of changes in measurement 
values of one (first) time slice after the beginning of the 
transient mode. In this case, the number of CNN input 
parameters is 256 (voltage phases in the PMU placement 
buses and current modules in the branches incident to the 
PMU placement buses). 

Changes in measurement values for one time slice 
are     calculated     as     the    difference    between     the  
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Fig. 2. NPCC 140-bus power system. 

 
measurements of the current and the preceding time 
slice. The time interval between time slices is 0.02 s, 
which corresponds to the PMU sampling rate. 

Since to solve the problem, an CNN is used, the input 
layer of which, as mentioned above, accepts three-
dimensional signals, the first version of the input 
parameters is a three-dimensional 1x256x1 matrix. For 
each variant of input parameters a different CNN 
architecture is used. 

The results of the calculations according to the 
variants proposed above are shown in Table 1. 

 
Table 1. Average accuracy of topology change detection 

for different data options when disconnecting/connecting one 
line. 

Data 
option 

Dimension of 
input 

parameters 

Average 
calculation 

accuracy (%) 
1 1х256х1 91,48 
2 2х256х1 92,19 
3 3х256х1 92,81 
4 4х256х1 92,71 
5 5х256х1 92,79 
6 6х256х1 95,24 
7 7х256х1 94,92 
8 8х256х1 95,08 
9 9х256х1 95,03 
10 10х256х1 95,11 

 
The accuracy of the calculations shows how correctly 

the CNN has determined the state of the lines in all the 
tested samples. The lowest accuracy corresponds to the 
first variant of the input data (91.48%). Starting from the 
sixth variant accuracy in detecting changes in the 
network topology in question in the event of switching-
off / in one of the lines is over  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
95%. Thus, the accumulation of the PMU data from the 
time of the emergency improves the topology detection 
accuracy of the electric network. 

Rough error in PMU measurements. The effect of 
coarse measurement error associated with a change in 
the sign of the current modulus was investigated for 6 - 
10 variants of the input data. The essence of the study 
was that in one of the time slices (after 0.02 s and 0.14 s 
after the start of the transient) the sign of the current 
modulus for one of the two lines (25th or 28th) changed, 
and the indicated change remained constant until the end 
of the time interval in question. 

The interval of current modulus values in all 600 
modes for Line 25 is [0.0295;4.8855] (mean value 1.072 
p.u.); for Line 28 is [0.7323;5.8693] (mean value 2.7079 
p.u.). Training was performed with data without coarse 
error. The test results are shown in Table 2. 

Based on the results obtained, a conclusion was made 
about a sharp decrease in the accuracy of detecting 
topology changes in the case of switching-off one of the 
lines (in Table 2, these values are highlighted in bold). 
For line 25 with a smaller value of the current modulus, 
the accuracy in this case is higher than for line 28. When 
the line was turned on, the classifiers correctly identified 
the topology state in most cases. 

Due to the low accuracy of topology detection, a 
classifier using the 10th variant of input parameters was 
tested. The training sample included 20% of the data 
with a coarse error. The results of the calculations are 
shown in Table 3, which shows that the accuracy for the 
data without coarse error decreased slightly, but the 
accuracy for the data with coarse error increased. 
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Table 2. Calculation results for data with gross errors. 
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Accuracy (%) 
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No gross errors - 92,07 98,4 
when the line 25 
outage occurs  

0,02  28,935 95,92 
0,14  49,905 98,4 

when the line 25 
is turned on 

0,02  92,07 98,39 
0,14  92,07 79,33 

when the line 28 
outage occurs 

0,02  6,375 98,4 
0,14  19,3 98,4 

when line 28 is 
turned on 

0,02  92,07 99,42 
0,14  92,07 67,43 

7х
25
6х
1 

    

No gross errors - 91,68 98,16 
when the line 25 
outage occurs 

0,02  43,09 98,16 
0,14  40,04 98,16 

when line 25 is 
turned on 

0,02  91,68 99,31 
0,14  91,68 98,24 

when the line 28 
outage occurs 

0,02  7,92 98,16 
0,14  11,26 98,16 

when line 28 is 
turned on 

0,02  91,68 99,78 
0,14  91,68 79,31 

8х
25
6х
1 

    

No gross errors - 91,69 98,46 
when the line 25 
outage occurs 

0,02  27,26 98,46 
0,14  14,6 98,46 

when line 25 is 
turned on 

0,02  92,58 99,39 
0,14  91,69 98,91 

when the line 28 
outage occurs 

0,02  11,48 98,46 
0,14  2,95 98,46 

when line 28 is 
turned on 

0,02  91,69 99,66 
0,14  91,69 99,59 

9х
25
6х
1 

   

No gross errors - 92,29 97,76 
when the line 25 
outage occurs 

0,02  31,28 97,76 
0,14  24,38 97,76 

when line 25 is 
turned on 

0,02  92,29 99,48 
0,14  92,29 99,45 

when the line 28 
outage occurs 

0,02  7,34 97,76 
0,14  4,26 97,76 

when line 28 is 
turned on 

0,02  92,29 99,82 
0,14  92,29 99,8 

10
х2
56
х1

 
    

No gross errors - 91,95 98,26 
when the line 25 
outage occurs 

0,02  32,84 98,26 
0,14  21,0 98,26 

when line 25 is 
turned on 

0,02  91,95 95,3 
0,14  91,95 93,79 

when the line 28 
outage occurs 

0,02  13,5 98,26 
0,14  9,51 98,26 

when line 28 is 
turned on 

0,02  91,95 98,3 
0,14  91,95 99,18 

7 Conclusion 
In this work, studies were performed to detect the power  
transmission line state (switching-off/in) using the test 
model of the 140-bus NPCC system (USA, Canada). The 
application of the ANDES software package to obtain a 
database when solving this problem in the transient 
mode of the power system is considered.  

The developed classifier based on convolutional 
neural network processes a large volume of input data in 
real time.  Phasor   measurements  of   phases  and   
effective  

 
Table 3. Accuracy of calculations for 10 variants 
of input parameters when including data with 
gross error in the training sample. 
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Accuracy 
when the line 

outage 
occurs, (%) 

Accuracy 
when the line 
is turned on, 

(%) 
No gross errors 90,13 98,17 
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when the line 25 
outage occurs in 

0,02 s 

 
91,45 

 
98,16 

when the line 25 
outage occurs in 

0,14 s 

 
89,63 

 
98,16 

when the line 28 
outage occurs in 

0,02 s 

 
86,48 

 
98,16 

when the line 28 
outage occurs in 

0,14 s 

 
81,07 

 
98,16 

 
values of voltages and currents (modules) come from 57 
PMU installed in the power system. The accuracy of the 
line status detection is more than 95% when the phases 
of voltages and the effective values of currents of 6-10 
time slices are used as input parameters. Studies on the 
effect of coarse error (reversal of the sign of the current 
modulus) on the accuracy of topology detection have 
shown that to increase the accuracy it is necessary to 
include data with a coarse error in the training sample. In 
the future, we will test this work  on real-data (as 
opposed to synthetically generated data). 
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