
*Corresponding author: xaevec@mail.ru 

Hidden Markov Model and States Prediction of an Autonomous 
Wind-Diesel Complex 

Yuriy E. Obzherin1, Stanislav M. Sidorov2*, and Sergey N. Fedorenko3 
1Sevastopol State University, Department of Higher Mathematics, 299053 Sevastopol, Russia 
2Sevastopol State University, Department of Higher Mathematics, 299053 Sevastopol, Russia 
3Sevastopol State University, Department of Technological Processes and Production Automation, 299053 Sevastopol, Russia 

Abstract. The problem of assessing the reliability and analyzing the functioning of an autonomous wind-
diesel complex, consisting of a wind power plant, working and standby diesel generators, an inverter and a 
storage battery, is considered. First, a semi-Markov model of an autonomous wind-diesel complex is built, 
which makes it possible to calculate the stationary and temporal reliability characteristics. Then, on its 
basis, a hidden Markov model is developed, which is used to solve the problems of predicting and 
evaluating its characteristics, taking into account the given parameters and the signal vector. The results of 
the study are obtained in a general form and are invariant with respect to the laws of distribution of 
random variables describing the elements of an autonomous wind-diesel complex. They allow you to 
simulate the functioning of the system under various distribution laws, based on statistical data, without 
modifying the model itself. 

Introduction 

Currently, renewable energy sources are being 
introduced into power supply system’s everywhere. 
The combined use of wind turbines and diesel 
generators contributes not only to economic benefits, 
but also to the reduction of emissions of fuel 
processing products. [10, 2] However, the efficiency of 
wind turbines depends on many factors, in particular, 
on the wind load, which is stochastic. In this regard, 
the problem arises of constructing adequate 
mathematical models that take into account the 
stochastic nature of work and the natural resources 
used (for example, wind) and the presence of a diesel 
generator (backup energy source). 

The article [3] considers an approximate model of a 
wind-diesel complex in Matlab\Simulink. Articles [4, 
5] present the results of simulation studies. In [6, 7], 
the assessment of the operating modes of the power 
supply complex with a wind-diesel power plant is 
studied. In [1, 2], Markov models are used to analyze 
the functioning of a wind-diesel complex. It should be 
noted that most of the results obtained by other authors 
consider cases where the random variables describing 
the system have an exponential distribution (Markov 
model). The semi-Markov model proposed in this 
article allows the use of distributions of an arbitrary 
form. It also allows you to find the time characteristics 
of the reliability and efficiency of the system, in 
contrast to the Markov model.  

Secondly, for territorially remote systems (or 
systems controlled remotely), the operator is not 
always able to completely obtain the information 
contained in the encoding of the states of the semi-

Markov model when changing their states, but it is 
always possible to obtain some signal (information) 
associated with the states of the nested chain Markov, 
which can be considered unobservable (hidden). In 
such cases, the use of the theory of hidden Markov 
models makes it possible to solve the problems of 
finding and estimating characteristics based on the 
observed signal vector. The purpose of our work is to 
apply the theory of semi-Markov processes with a 
common phase space of states and the theory of hidden 
Markov models for the analysis of reliability and 
efficiency of an autonomous wind-diesel complex 
(WDC). 

This article discusses the problem of assessing the 
reliability and analysis of the functioning of an 
autonomous WDC, consisting of a wind power plant, 
working and standby diesel generators, an inverter and 
a storage battery. 

In this paper, first, a semi-Markov model [8-12] of 
an autonomous WDC is constructed, which makes it 
possible to calculate the stationary and temporal 
characteristics of reliability. Then, following the 
methodology proposed by the authors [18], a hidden 
Markov model [15–17] is developed on its basis, which 
is used to solve forecasting problems and evaluate its 
characteristics, taking into account the given 
parameters. 

1 Semi-Markov model of an 
autonomous WDC  

Consider system S, which is an autonomous wind-
diesel complex. We will consider the inverter and the 
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battery to be absolutely reliable in the sense that the 
probability of their failure is much less than the 
probability of failure of other elements. Therefore, we 
will not take them into account when constructing a 
semi-Markov model. Then the system S can be 
represented as a three-element system with a time 
reserve: element 1 is a wind turbine, element 2 is a 
diesel generator (DG), element 3 is a reserve diesel 
generator (RDG) (time reserve). The failure of element 
1 should be understood as any event that leads to 
disruption of normal functioning (for example, lack of 
wind, failure of one of the components, etc.). The 
system functions as follows: if element 1 (2) fails, then 
element 2 (1) is switched off, element 3 is switched on, 
and the system operates due to the reserve of time 
(element 3). As soon as element 1 (2) is restored, 
element 3 is switched off (in this case, we assume that 
by the next time its characteristics are fully restored), 
and element 2 (1) starts working with the previous 
level of operating time. System failure occurs when 
element 1 (2) is on recovery, element 2 (1) is disabled, 
and the reserve time ends (failure of element 3). The 
reserve of time ends if either the fuel of the backup 
generator runs out (time of operation due to the reserve 
of fuel), or it fails. 

Let`s assume that the uptime of elements 1 and 2 
are described by random variables (RV) α  and α , 
respectively, having distribution functions F x
P α x , F x P α x  and density 
distributions f x , f x , and the recovery time - by 
random variables β  and β , having distribution 
functions G x P β x , G x P β x  and 
distribution density g x , g x . A random instantly 
replenished reserve of time is considered, which is 
described by RV τ having the distribution function 
R x P τ x  and distribution density r x . 
Random variables  α , α ,  β , β , τ are assumed to be 
independent and have finite mathematical expectations. 
It should be noted that SV τ is the minimum of the 
operating time due to the fuel reserve of the standby 
generator and its uptime. 

On fig. 1 is shown a block diagram of the system 
under consideration. 

Consider the discrete-continuous phase space of 
states of the system under consideration: 

𝐸 1112𝑥 , 2112𝑥 , 1021𝑥 , 2201𝑥 , 3020𝑥 𝑥 , 3200𝑥 𝑥  1 . 

Phase states are designated according to the 
following scheme: the first digit of the code indicates 
the number of the element in which the state change 
occurred; the rest of the numbers - what happens to 
each element (1 – work, 2 – disabled, 0 – recovery). 
The continuous components show the time remaining 
until the next state change. 

 

 

Fig. 1. Structural diagram of the considered system 

Let's decipher the values of the status codes: 

 1112𝑥  (2112𝑥 ) – element 1(2) has been restored, 
element 2(1) is enabled, element 3 is disabled, 𝑥  𝑥  
– time until the end of element 2(1) operation. 

 1021𝑥  (2201𝑥 ) – element 1(2) fails and starts 
recovery, element 2(1) turns off, element 3 turns on, 
𝑥  𝑥  time until element 2(1) ends. 

 3020𝑥 𝑥  (3200𝑥 𝑥 ) – system failure: 𝑥  𝑥  – 
time until the end of element 1(2) restoration, 𝑥  𝑥  – 
time until the end of element 2(1) operation. 

Let`s write down the probabilities of transitions 
between the states of the system: 

 
𝑃 𝑓 𝑥 𝑥 , 𝑥 0;    

 
𝑃 𝑓 𝑥 𝑦 , 0 𝑦 𝑥 ; 

 
𝑃 𝑓 𝑥 𝑥 , 𝑥 0; 

 
   𝑃 𝑓 𝑥 𝑦 , 0 𝑦 𝑥 ; 

 

𝑃 𝑔 𝑡 𝑅 𝑡 𝑑𝑡 𝑃 𝜏 𝛽 ; 

   

 𝑃 𝑟 𝑡 𝑔 𝑥 𝑡 𝑑𝑡 ; 

 

𝑃 𝑔 𝑡 𝑅 𝑡 𝑑𝑡 𝑃 𝜏 𝛽 ; 

 

𝑃 𝑟 𝑡 𝑔 𝑥 𝑡 𝑑𝑡 ;  

 
𝑃 1,      𝑃 1.           (2) 

 
Let`s write down the system of equations for 

finding the stationary distribution of the embedded 
Markov chain. 
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⎪
⎧ 𝜌 1112𝑥 𝜌 1021𝑥 𝑔 𝑡 𝑅 𝑡 𝑑𝑡

𝜌 3020𝑥 𝑥 𝑑𝑥 ,

𝜌 2112𝑥 𝜌 2201𝑥 𝑔 𝑡 𝑅 𝑡 𝑑𝑡

𝜌 3200𝑥 𝑥 𝑑𝑥 ,

𝜌 1021𝑥 𝑓 𝑦 𝑥 𝜌 1112𝑦 𝑑𝑦

𝑓 𝑥 𝑥 𝜌 2112𝑥 𝑑𝑥 ,

𝜌 2201𝑥 𝑓 𝑦 𝑥 𝜌 2112𝑦 𝑑𝑦

𝑓 𝑥 𝑥 𝜌 1112𝑥 𝑑𝑥 ,

𝜌 3020𝑥 𝑥 𝜌 1021𝑥 𝑟 𝑡 𝑔 𝑥 𝑡 𝑑𝑡 ,

𝜌 3200𝑥 𝑥 𝜌 2201𝑥 𝑟 𝑡 𝑔 𝑥 𝑡 𝑑𝑡 ,

𝜌 𝑒 𝑑𝑒 1  normalization condition .      3

 

 
Let `s substitute equation 5 into equation 1 of 

system (3). We`ll get 
 

𝜌 1112𝑥 𝜌 1021𝑥 𝑔 𝑡 𝑅 𝑡 𝑑𝑡  

𝜌 1021𝑥 𝑑𝑥 𝑟 𝑡 𝑔 𝑥 𝑡 𝑑𝑡  

𝜌 1021𝑥 𝑔 𝑡 𝑅 𝑡 𝑑𝑡

𝑑𝑥 𝑟 𝑡 𝑔 𝑥 𝑡 𝑑𝑡  

𝜌 1021𝑥 𝑔 𝑡 𝑅 𝑡 𝑑𝑡

𝑟 𝑡 𝑑𝑡 𝑔 𝑥 𝑡 𝑑𝑥  

𝜌 1021𝑥 𝑔 𝑡 𝑅 𝑡 𝑑𝑡 𝑟 𝑡 𝐺 𝑡 𝑑𝑡  

𝜌 1021𝑥 . 
 

Similarly, substituting equation 6 into equation 2 of 
system (3), we obtain: 

𝜌 2112𝑥 𝜌 2201𝑥 . 

Consequently, system (3) is reduced to the form: 
 

⎩
⎪
⎨

⎪
⎧𝜌 1021𝑥 𝑓 𝑦 𝑥 𝜌 1021𝑦 𝑑𝑦

𝑓 𝑥 𝑥 𝜌 2201𝑥 𝑑𝑥 ,

𝜌 2201𝑥 𝑓 𝑦 𝑥 𝜌 2201𝑦 𝑑𝑦

𝑓 𝑥 𝑥 𝜌 1021𝑥 𝑑𝑥 .

 (4) 

The solution to system (4) was found in [12] and 
has the form: 

𝜌 1112𝑥 𝜌 1021𝑥 𝜌 𝐹 𝑥 , 

𝜌 2112𝑥 𝜌 2201𝑥  𝜌 𝐹 𝑥 , 

𝜌 3020𝑥 𝑥 𝜌 𝐹 𝑥 𝑟 𝑡 𝑔 𝑥 𝑡 𝑑𝑡, 

𝜌 3200𝑥 𝑥 𝜌 𝐹 𝑥 𝑟 𝑡 𝑔 𝑥 𝑡 𝑑𝑡,  (5) 

the constant 𝜌   is found from the normalization 
condition. 

Stay times in system states: 

𝜃 𝛼 ∧ 𝑥 , 𝜃 𝛼 ∧ 𝑥 , 

  𝜃 𝛽 ∧ 𝜏,𝜃 𝛽 ∧ 𝜏,   

𝜃 𝑥 , 𝜃 𝑥 ,.       (6) 

where ∧  is the sign of the minimum. 
 

Then the average residence times in the states are 
equal to: 

𝐸𝜃 𝐹 𝑡 𝑑𝑡,   𝐸𝜃 𝐹 𝑡 𝑑𝑡, 

𝐸𝜃 𝐺 𝑡 𝑅 𝑡 𝑑𝑡, 

  𝐸𝜃 𝐺 𝑡 𝑅 𝑡 𝑑𝑡,.             (7) 

𝐸𝜃 𝑥 , 𝐸𝜃 𝑥 . 

We divide the state space E into two non-
overlapping subsets: healthy (𝐸 ) and failure states 
(𝐸 ): 

𝐸 1112𝑥 , 2112𝑥 , 1021𝑥 , 2201𝑥 , 

  𝐸 3020𝑥 𝑥 , 3200𝑥 𝑥  

Let`s find the stationary characteristics of the 
system reliability. 

Using transition probabilities (2), stationary 
distribution (5), average residence times in states (7), 
we obtain: 

𝑚 𝑥 𝜌 𝑑𝑥 𝜌 𝐹 𝑥 𝑑𝑥 𝐺 𝑡 𝑅 𝑡 𝑑𝑡  

𝜌 𝐹 𝑥 𝑑𝑥 𝐺 𝑡 𝑅 𝑡 𝑑𝑡  

𝜌 𝐹 𝑥 𝑑𝑥 𝐹 𝑡 𝑑𝑡  

𝜌 𝐹 𝑥 𝑑𝑥 𝐹 𝑡 𝑑𝑡  

𝜌 𝐸𝛼 𝐸 𝛽 ∧ 𝜏 𝜌 𝐸𝛼 𝐸 𝛽 ∧ 𝜏  

𝜌 𝐸𝛼 𝐸𝛼 . 

𝑃 𝑥,𝐸 𝜌 𝑑𝑥  

𝜌 𝑑𝑥 𝐹 𝑥 𝑑𝑥 𝑟 𝑡 𝑔 𝑥 𝑡 𝑑𝑡  
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𝜌 𝑑𝑥 𝐹 𝑥 𝑑𝑥 𝑟 𝑡 𝑔 𝑥 𝑡 𝑑𝑡  

𝜌 𝐸𝛼 𝑟 𝑡 𝐺 𝑡 𝑑𝑡 𝜌 𝐸𝛼 𝑟 𝑡 𝐺 𝑡 𝑑𝑡  

𝜌 𝐸𝛼 𝑃 𝛽 𝜏 𝜌 𝐸𝛼 𝑃 𝛽 𝜏 . 

𝑚 𝑥 𝜌 𝑑𝑥  

𝜌 𝑥 𝑑𝑥 𝐹 𝑥 𝑑𝑥 𝑟 𝑡 𝑔 𝑥 𝑡 𝑑𝑡  

𝜌 𝑥 𝑑𝑥 𝐹 𝑥 𝑑𝑥 𝑟 𝑡 𝑔 𝑥 𝑡 𝑑𝑡  

𝜌 𝐸𝛼 𝑥 𝑑𝑥 𝑟 𝑡 𝑔 𝑥 𝑡 𝑑𝑡  

𝜌 𝐸𝛼 𝑥 𝑑𝑥 𝑟 𝑡 𝑔 𝑥 𝑡 𝑑𝑡. 

 

Using the results obtained in [18, p. 61], 

𝑚 𝑥 𝜌 𝑑𝑥 𝜌 𝐸𝛼 𝐸𝛽 𝐸 𝛽 ∧ 𝜏  

𝜌 𝐸𝛼 𝐸𝛽 𝐸 𝛽 ∧ 𝜏 . 

𝑚 𝑥 𝜌 𝑑𝑥 𝑚 𝑥 𝜌 𝑑𝑥 𝑚 𝑥 𝜌 𝑑𝑥  

𝜌 𝐸𝛼 𝐸𝛽 𝐸 𝛽 ∧ 𝜏  

𝜌 𝐸𝛼 𝐸𝛽 𝐸 𝛽 ∧ 𝜏 𝜌 𝐸𝛼 𝐸 𝛽 ∧ 𝜏  

𝜌 𝐸𝛼 𝐸 𝛽 ∧ 𝜏 𝜌 𝐸𝛼 𝐸𝛼  

𝜌 𝐸𝛼 𝐸𝛼 𝐸𝛼 𝐸𝛽 𝐸𝛼 𝐸𝛽 . 

Where indicated above: 
𝑚 𝑥  – average residence times in states, 𝑃 𝑥,𝐸  – 
probabilities of transition from operable to failure 
states, 𝐸 𝛽 ∧ 𝜏  – mathematical expectation of the 
minimum of two RVs, 𝑃 𝛽 𝜏  – mathematical 
expectation of that RV β is greater than RV τ, 

𝑃 𝛽 𝜏 𝑟 𝑡 �̅� 𝑡 𝑑𝑡  , 

  𝐸 𝛽 ∧ 𝜏 �̅� 𝑡 𝑅 𝑡 𝑑𝑡  . 

Using the formulas presented in [12, 13] and the 
expressions found above, we obtain: 

 
 mean stationary uptime 𝑇 : 

𝑇
𝑚 𝑥 𝜌 𝑑𝑥

𝑃 𝑥,𝐸 𝜌 𝑑𝑥
 

𝐸𝛼 𝐸 𝛽 ∧ 𝜏 𝐸𝛼 𝐸 𝛽 ∧ 𝜏 𝐸𝛼 𝐸𝛼
𝐸𝛼 𝑃 𝛽 𝜏 𝐸𝛼 𝑃 𝛽 𝜏

, 

 
 
 

 average stationary recovery time 𝑇  : 

𝑇
𝑚 𝑥 𝜌 𝑑𝑥

𝑃 𝑥,𝐸 𝜌 𝑑𝑥
 

𝐸𝛼 𝐸𝛽 𝐸 𝛽 ∧ 𝜏 𝐸𝛼 𝐸𝛽 𝐸 𝛽 ∧ 𝜏
𝐸𝛼 𝑃 𝛽 𝜏 𝐸𝛼 𝑃 𝛽 𝜏

, 

 

 stationary availability factor 𝐹  : 

𝐹
𝑚 𝑥 𝜌 𝑑𝑥

𝑚 𝑥 𝜌 𝑑𝑥
 

𝐸𝛼 𝐸 𝛽 ∧ 𝜏 𝐸𝛼 𝐸 𝛽 ∧ 𝜏 𝐸𝛼 𝐸𝛼
𝐸𝛼 𝐸𝛼 𝐸𝛼 𝐸𝛽 𝐸𝛼 𝐸𝛽

. 

In the case of a non-random slack, i.e. when 
𝑅 𝑥 1 𝑥 ℎ  where h is the value of the time 
reserve, stationary characteristics of reliability will take 
the form: 
 
 mean stationary uptime 𝑇 : 

 

𝑇
𝐸𝛼 𝐺 𝑡 𝑑𝑡 𝐸𝛼 𝐺 𝑡 𝑑𝑡 𝐸𝛼 𝐸𝛼

𝐸𝛼 𝐺 ℎ 𝐸𝛼 𝐺 ℎ
, 8  

 

 average stationary recovery time 𝑇  : 
 

𝑇
𝐸𝛼 𝐺 𝑡 𝑑𝑡 𝐸𝛼 𝐺 𝑡 𝑑𝑡

𝐸𝛼 𝐺 ℎ 𝐸𝛼 𝐺 ℎ
,   9  

 
 stationary availability factor 𝐹 : 

 

𝐹
𝐸𝛼 𝐺 𝑡 𝑑𝑡 𝐸𝛼 𝐺 𝑡 𝑑𝑡 𝐸𝛼 𝐸𝛼

𝐸𝛼 𝐸𝛼 𝐸𝛼 𝐸𝛽 𝐸𝛼 𝐸𝛽
. 10  

 
As an illustrative example of the use of formulas 

(8)-(9), consider the system S, for which, before the 
start of its operation, it is assumed that the RVs 
α ,α ,β ,β  have an Erlang distribution of order IV 
and Eα 150 h, Eα 100 h, Eβ 24 h, Eβ
20 h, and the time reserve h varies from 10 to 20 hours.  

The results obtained are shown in fig. 2. 
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Fig. 2. Graphs of stationary reliability characteristics for 
different values of the reserve time h: a) mean uptime, b) 

mean recovery time, c) stationary availability factor. 

2 Finding the transition probabilities of 
the enlarged semi-Markov model 

To construct a hidden Markov model (HMM), we 
enlarge the stationary distributions (5) in terms of 
continuous components, i.e. we apply the algorithm of 
stationary phase enlargement to each state. Note that 
the phase space of semi-Markov states is obtained by 
adding to the codes of physical states a set of 
continuous components that fix the residual times of 
the action of factors that change the state of the system. 
[13] It is desirable to enlarge these continuous 
components, leaving only a discrete set of physical 
states. 

We`ll get 

𝜌 1112𝑥 𝑑𝑥 𝜌 1021𝑥 𝑑𝑥  

𝜌 𝐹 𝑥 𝑑𝑥 𝜌 𝐸𝛼 , 

𝜌 2112𝑥 𝑑𝑥 𝜌 2201𝑥 𝑑𝑥  

𝜌 𝐹 𝑥 𝑑𝑥 𝜌 𝐸𝛼 , 

𝜌 3020𝑥 𝑥 𝑑𝑥 𝑑𝑥  

𝜌 𝐹 𝑥 𝑑𝑥 𝑥 𝑑𝑥 𝑟 𝑡 𝑔 𝑥 𝑡 𝑑𝑡  

𝜌 𝐸𝛼 𝑟 𝑡 𝐺 𝑡 𝑑𝑡 𝜌 𝐸𝛼 𝑃 𝛽 𝜏 . 

𝜌 3200𝑥 𝑥 𝑑𝑥 𝑑𝑥  

𝜌 𝐹 𝑥 𝑑𝑥 𝑥 𝑑𝑥 𝑟 𝑡 𝑔 𝑥 𝑡 𝑑𝑡  

𝜌 𝐸𝛼 𝑟 𝑡 𝐺 𝑡 𝑑𝑡 𝜌 𝐸𝛼 𝑃 𝛽 𝜏 . 

Consequently, the discrete phase space of enlarged 
states of the system under consideration has the form: 

 
𝐸 1112, 2112, 1021, 2201, 3020, 3200 . 

 
Using the formulas presented in [12, p. 36], 

 

𝑝
𝜌 𝑑𝑒 𝑃 𝑒,𝐸

𝜌 𝐸
,   𝑚

𝜌 𝑑𝑒 𝑚 𝑒

𝜌 𝐸
  11   

  

we find the probabilities of transitions p  between the 
enlarged states and the average sojourn times m  in 
them. 

Let`s calculate the denominators of formulas (11). 
𝜌 𝐸 𝜌 𝐸 𝜌 𝐸𝛼 ,  

  𝜌 𝐸 𝜌 𝐸 𝜌 𝐸𝛼 , 

𝜌 𝐸 𝜌 𝐸𝛼 𝑃 𝛽 𝜏 ,  

  𝜌 𝐸 𝜌 𝐸𝛼 𝑃 𝛽 𝜏 . 

Average sojourn times m  equals: 
 

𝑚
𝐹 𝑥 𝑑𝑥 𝐹 𝑡 𝑑𝑡

𝐸𝛼
, 

  𝑚
𝐹 𝑥 𝑑𝑥 𝐹 𝑡 𝑑𝑡

𝐸𝛼
, 

 

𝑚
𝐹 𝑥 𝑑𝑥 𝐺 𝑡 𝑅 𝑡 𝑑𝑡

𝐸𝛼
𝐸 𝛽 ∧ 𝜏 , 

 
  𝑚 𝐸 𝛽 ∧ 𝜏 , 

 

𝑚
𝐸𝛽 𝐸 𝛽 ∧ 𝜏

𝑃 𝛽 𝜏
, 

  𝑚
𝐸𝛽 𝐸 𝛽 ∧ 𝜏

𝑃 𝛽 𝜏
. 

Let`s find the transition probabilities 𝑝  : 
 

�̂�
𝐹 𝑥 𝑑𝑥 𝑓 𝑥 𝑡 𝑑𝑡

𝐸𝛼
 

𝐸𝛼 𝐸 𝛼 ∧ 𝛼
𝐸𝛼

, 

�̂�
𝐸 𝛼 ∧ 𝛼

𝐸𝛼
, �̂�

𝐸 𝛼 ∧ 𝛼
𝐸𝛼

, 
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  �̂�
𝐸𝛼 𝐸 𝛼 ∧ 𝛼

𝐸𝛼
,  

 
�̂� 𝑃 𝜏 𝛽 , �̂� 𝑃 𝜏 𝛽 , 

  �̂� 𝑃 𝜏 𝛽 ,  
 
�̂� 𝑃 𝜏 𝛽 , �̂� 1, �̂� 1.  

 

Then the matrix of transition probabilities 𝑃  
between the enlarged states of the system is equal to: 
 

   

   

   
   

2 1 2 1 2

2 2

1 2 1 1 2

1 1

1 1

2 2

0 0 0 0

0 0 0 0
ˆ

0 0 0 0

0 0 0 0

1 0 0 0 0 0

0 1 0 0 0 0

j
i

E E E

M E

E E E

E E
P

P P

P P

    
 

    
 

   
   

   
 
 
   
 
     

  
 
 
 
 

 

3 Hidden Markov model of the system 
under consideration 

For a complete description of the HMM [16, 17], it is 
necessary to determine: 

1. The set of model states corresponds to the set of 
states of the enlarged model 𝐸. 

2. Observable sequence alphabet (set of signals). 
Let`s assume that during the functioning of the 

system S, the states of the EMC of the enlarged model 
are not observed (hidden states), but only the number 
of operable elements is observed during the change of 
states of the HMM. We introduce the following set of 
signals: 

𝐽 0, 1, 2 , 
where 

 0 - system failure; 
 1 - elements 1 and 2 of the system are 

functioning; 
 2 - the system is operational due to the backup 

diesel generator. 
Many signals can be selected in different ways. The 

set of signals J is chosen in this form, because 
"Accurate" information about the number of operable 
main and redundant elements can be obtained for 
almost any system. 

3. The matrix of transition probabilities between 
system states. 

For our model, the transition probability matrix 
consists of the transition probabilities 𝑃  of the 
enlarged semi-Markov model. 

4. Connection of model states with signals. 

Consider the relationship between the states of the 
embedded Markov chain (EMC) of the enlarged model 
and signals, i.e. define the connection function 𝑅 𝑠|𝒙  
[16, 18]: 

𝑅 𝑠|𝒙 𝑃 𝑆 𝑠|𝑋 𝒙 ,𝒙 ∈ 𝐸, 𝑠 ∈ 𝐽, 

  𝑅 𝑠|𝒙
∈

1, 

 

where 𝑆  is the n-th signal. 
We assume that signals 0 and 2 are emitted 

correctly with a probability of 0.99 and erroneously 
with a probability of 0.01. 

The function 𝑅 𝑠|𝒙  of the connection between the 
NCM states of the integrated digital model and the 
signals is presented in Table 1. 

Table 1. The connection function between the merged model 
EMC states and the signals. 

                         Signal, s  
Condition, x s=0 s=1 s=2 

1112 0 1 0 

2112 0 1 0 
1021 0.01 0 0.99 
2201 0.01 0 0.99 
3020 0.99 0 0.01 
3200 0.99 0 0.01 

 

5. The initial probability distribution of the model. 

We will assume that at the initial moment of time 
the enlarged model can be equally likely to be in the 
state 1112 or 2112. 

The HMM is built on the basis of the enlarged semi-
Markov model. 

4 Evaluation of characteristics and 
prediction of states 

As an illustrative example, consider a system S, for 
which, before starting its operation, it is assumed that 
the CVs 𝛼 ,𝛼 ,𝛽 ,𝛽  have an Erlang distribution of 
order IV and 𝐸𝛼 150 h, 𝐸𝛼 100 h, 𝐸𝛽 24 h, 
𝐸𝛽 20 h, 𝐸𝜏 15 h. It is assumed that at the initial 
time the system is in states 1112 and 2112 with 
probabilities of 0.5. 

Suppose that as a result of the operation of the 
system S, the following vector of signals is received: 

 𝑠  (1,2,1,2,1,2,1,2,0,1,2,1,2,1,2,0,1,2,1,2,0,1, 

2,1,2,1,2,1,2,1),   n=30. 

Consider the problem of estimating the 
characteristics of a hidden Markov model, taking into 
account the introduced parameters, following [18, 19]. 

1. Let`s determine the probabilities of states of the 
hidden model at the moment of emission of the 30th 
signal (the last signal in the chain). 

Because the 30th signal is equal to 1 (elements 1 
and 2 of the system are functioning), then the task is to 
determine the probability of finding the enlarged 
system in states leading to the emission of the specified 
signal. As a result, we get that at the 30th step the 
enlarged model with a probability of 0.3553 was in 
state 1112, with a probability of 0.6447 in state 2112. 
For other states, this probability is equal to zero. 
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Fig. 4. The trellis of maximized transition probabilities for considered chain of signals 

 
 
2. Let's find the probabilities with which the hidden 

model will make the transition to the states at the next 
31st step. 

The probabilities of the transition of the hidden 
model at the 31st step: to state 1021 with a probability 
of 0.419, to state 2201 – 0.581, to all others – with 
zero. 

3. Let's determine the probabilities of the appearance 
of signals at the next 31st step. 

We get that the probability of the appearance of 
signal 2 at the 31st step is 0.99, signal 0 – 0.01, signal 
1  – 0. 

4. Let's find the probability of occurrence (emission) 
of the received signal vector 𝑠 .  

The probability of occurrence of the received signal 
vector 𝑠  is equal to 0.00000243. 

5. Forecasting the states of the hidden model based 
on the received signal vector. 

Table 2 shows the most probable states of the 
hidden model at the transitions indicated in it and the 
probabilities of these states. 

 
Table 2. Most probable states of the hidden model on 

transitions. 
 

Transition 
number 

1 7 11 17 21 26 29 

Most likely 
state 

1112 2112 2201 2112 3200 2112 2201 

State 
probabi- 

lity 
0.5233 0.6737 0.652 0.519 0.5136 0.6132 0.6447 

 
Applying the Baum-Welsh algorithm [15, 16], we 

obtain an overestimated matrix of transition 
probabilities for the system under consideration. The 
original transition probability matrix and the transition 
probability matrix after reassessment are presented in 
Fig. 3. 

Applying the Viterbi algorithm [15, 16] to the 
overestimated model, we determine the most probable 
chain of states for the received signal vector: 2201, 
3200, 2112, 2201, 2112, 1021, 3020, 1112, 2201, 2112, 
1021, 2112, 2201, 2112, 1021, 2112. 

The trellis diagram for the first 12 received signals 
is shown on fig. 4. For simplicity, the following 
recoding of model states is used: 1112↔1, 2112↔2, 
1021↔3, 2201↔4, 3020↔5, 3200↔6. The most 
probable states (according to the Viterbi algorithm for 
the overestimated model) for the vector of received 
signals are marked with a thick line. Thin lines connect 
other possible states that the system could achieve 
without information about the signal vector. 

 
0 0 0.1454 0.8546 0 0

0 0 0.5697 0.4303 0 0

0.2606 0 0 0 0.7394 0

0 0.3469 0 0 0 0.6531

1 0 0 0 0 0

0 1 0 0 0 0

 
 
 
 
 
 
 
  
 

 

а) 
0 0 0.1283 0.8717 0 0

0 0 0.5369 0.4631 0 0

0.7075 0 0 0 0.2925 0

0 0.8066 0 0 0 0.1934

1 0 0 0 0 0

0 1 0 0 0 0

 
 
 
 
 
 
 
  
 

 

b) 
Fig. 3. Transition probability matrices:  

a) original transition probability matrix ,j
iP  

b) overestimated transition probability matrix j
iP . 

Discussions 

The results of this article open up great opportunities 
for evaluating the functioning of autonomous wind-
diesel complexes. The article shows how to apply the 
apparatus of the theory of hidden Markov models (used 
for systems with a finite set of states) to semi-Markov 
models that have a common phase space of states, 
which expands the possibilities of applying the HMM 
theory. 

The article provides only illustrative examples 
showing the expansion of the possibilities of modeling 
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autonomous wind-diesel complexes using the 
methodology developed by the authors. However, it is 
obvious that it will not be difficult for energy 
specialists to use the parameters of real wind-diesel 
complexes as input data for models with subsequent 
calculation of characteristics. 

It should be noted that the results obtained, with 
proper reformulation, can be used to analyze the 
functioning of technical systems for various purposes. 

Conclusion 

In this work, a semi-Markov model of an autonomous 
WDC is constructed, which allows calculating the 
stationary and temporal reliability characteristics. 
Then, on its basis, a hidden Markov model was 
developed, which is used to find estimates of the 
characteristics of an autonomous WDC and predict its 
states based on the signal vector obtained as a result of 
the operation. The results of the study will make it 
possible to predict the operating modes of an 
autonomous WDC. The resulting HMM allows you to 
re-evaluate the parameters of the constructed model 
(train) to increase its adequacy, according to the signals 
received in the process of functioning. 

The results of the study are obtained in a general 
form and are invariant with respect to the distribution 
laws of random variables that describe the elements of 
an autonomous WDC. They allow you to simulate the 
functioning of the system under various distribution 
laws, based on statistical data, without modifying the 
model itself. In the future, it is planned to generalize 
the results for the case of a fleet (consisting of N 
pieces) of wind-diesel complexes. 

 
The study was supported by the grant of the President 

of the Russian Federation for state support of young 
Russian scientists – Candidates of Sciences No. MK-
 329.2022.4. 
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