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Abstract. The development of models for forecasting electricity consumption is a complex 
process, due to the non-linear dependence of electricity consumption on factors that affect the 
forecast indicators. Since the current forecasting methods do not take into account this non-linearity, 
the difference between the actual and forecast indicators of electricity consumption often exceeds 
the allowable values. To determine the required forecast indicators with high accuracy is the use of 
artificial intelligence methods. In this paper, when predicting electricity consumption, the method of 
autoregression of the integrated moving average is used. An enlarged block diagram of the 
algorithm for predicting power consumption using the ARIMA method has been developed. 

1 Introduction 

The creation and implementation in practice of 
forecasting models using the ARIMA method is simple 
in determining forecast indicators, in particular, in the 
process of checking the adequacy of the developed 
model. If the forecast error deviates from acceptable 
values, the automatic change of ARIMA components 
allows obtaining high-precision forecast indicators. Point 
and interval prediction can be performed using any 
developed model; for these types of forecasting, it is not 
required to develop separate forecasting models [1, 2, 4]. 

2 The current state of the investigated 
problem 

It is known that the ARIMA method is part of the 
ARMA model, in which the autoregressive part has a 
differentiating component d to transform the time series 
into a stationary series. To do this, it is advisable to 
express these polynomials in the form of an operator for 
calculating the autoregression coefficients. To simplify 
the calculation and writing expressions in the form of an 
operator, the following definitions A are introduced [3, 
5]: 

 

A-d=0,, A-1=0. A0=-1, A1=a1, …, Ap=ap, Ap+1=0, …, Ap+d=0: 

 

 

                                   

        (1) 

Thus, the difference operator Δ can be transferred 
from the time series yt on a sequence of coefficients, and 
the number of non-zero terms will increase by one. 
Repeating these calculations d times and taking into 
account that ΔdA0=-1, we get: 

      (2) 

From the analysis (2) it can be concluded that in the 
structure of the ARMA model, MA is a process of 
infinite order with restrictions set by the limits. Using 
this method, it is possible to express a complex damage 
structure with a small amount of primary data. As 
mentioned above, this in turn is done by transforming the 
content of the non-stationary data into stationary data. 

An enlarged block diagram of the power 
consumption forecasting algorithm using the integrated 
moving average autoregression (ARIMA) method can be 
represented as shown in Fig. 1. Analysis of the graph 
shows that power consumption is a non-stationary 
process [19, 6-15, 17, 20, 18]. 

The ARIMA prediction model is represented by three 
components (p, d, q).  
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The order of the time series difference – d is 
calculated as follows. 

At the initial stage of creating a forecast model, a 
differentiation process is performed to obtain a constant 
time series from a changing time series. At the same 
time, with the help of formal tests, an assessment of the 
invariance of the initial time series is made. Since the 
processes of consumption of electrical energy are not 
always unchanged, then, with the help of certain 
transformations, the time series is reduced to a stationary 
mode. It includes the following parameters [16, 3, 21, 
22]: 

- finite differences: 

                  (3) 
where Хt – primary difference: 

 

Fig.1. Enlarged block diagram of the algorithm for predicting 
power consumption using the autoregressive method of the 
integrated moving average [8] 

 
Fig.2. Electricity consumption chart of a metallurgical 
enterprise 
 

 (4) 
         

(Zt – secondary difference); 
- logarithmic chain indices of the following form: 

   (5)  
 

- growth rate of the next type: 
              
            (6) 

- logarithmic series: 
              (7) 

- growth rate of the next type: 
                                                (8) 

 
It should be noted that when determining a stationary 

time series, it is necessary to take into account the nature 
of the change in the time series graph Хt. In this case, the 
main criterion for the quality of the process is the 
fulfillment of the condition Хt=f(Yt)≈const.  

For the case we are considering, the time series 
reaches stationarity with two orders of difference, that is, 
the second order is considered sufficient in our study 
(Fig. 3) [23, 7, 18]. 

 

 
Fig.3. Determining the order of the time series difference – d 
 

In this case, the stationarity of the series is checked 
first, using the extended Dickey Fuller test (adfuller) 
from the statsmodels package. If the series is non-
stationary, then it is necessary to differentiate it. 
Otherwise, no difference is required, that is, d = 0. After 

1 tttt YYYX

;ln tt YХ 
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that, differentiation is performed and the autocorrelation 
of the graph is obtained. As a graph line, it is enough to 
differentiate 1 time, so d is equal to 1. 

Autoregressive process to determine autoregressive 
order - p. 

In the autoregressive process, each time series value 
is the sum of a random relationship and takes previous 
values into account to predict future values. Any 
autocorrelation in the stationary series can be corrected 
by adding AR [7, 8, 24-28, 12]. In this case, the 
condition is accepted that the number of ARs is equal to 
the number of lags that cross the significance limit on the 
PACF graph (Fig. 4). 

On fig. 4.4 shows a lagging of 1 PACF as it is well 
above the significance line. Lag 2 is also significant, but 
it is in the marginal zone (blue area) and p can be taken 
tentatively as 1. 
 

 
Fig. 4. Partial autocorrelation function PACF 

 
Moving average process to determine the order of the 

moving average - q. 
It is known that the moving average component is 

required to adjust the time series and the process of 
forming the adjustment begins with determining the 
observation window. 

 

 
Fig. 5. Autocorrelation function ACF 

 
The autocorrelation function (ACF) shown in Figure 

5 allows you to determine the number of MA terms. 
Figure 4.5 shows that the pair of lags of the ACF 
autocorrelation function is much higher than the 
significance line and the dependence does not contain 
autocorrelation, so it is assumed that the q coefficient is 
equal to 1. 

According to the above calculations for forecasting in 
the ARIMA model, the main components are 
determined, and they have the following form: 
autoregression order p=1; the order of the time series 
difference d=1; moving average order q=1. In general 
ARIMA (1, 1, 1). 

The next step is to analyze the difference between the 
actual and forecast values, i.e. balances (imbalances). 
The assessment of the validity obtained using the 
ARIMA model is based on a comparison of the actual 

data with the simulation results. The evaluation results 
are shown in graphical form (Fig. 6) [14, 22, 15]. 

 

Fig. 6. Comparison of actual and forecast power consumption 
according to the ARIMA model (1,1,1) 
 

 
Fig. 7. Graph of the error between the actual and predicted 
values of power consumption according to the developed 
model using the ARIMA method 
 

The degree of adequacy of the developed models is 
substantiated by low absolute and relative errors between 
actual and forecast data. Analysis of the value of 
forecasting errors (Fig. 7) of the error shows (6%) that 
the obtained mathematical models of electrical energy 
consumption are adequate and therefore they can be used 
to determine the predicted values of power consumption 
parameters at ferrous metallurgy enterprises [10]. 

3 Conclusion 

Thus, it can be concluded that the use of models 
obtained on the basis of the ARIMA method for 
forecasting power consumption provides high accuracy 
and adequacy in determining the predicted values of 
power consumption parameters. 
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