Transformations of equations with approximation of characteristics of nonlinear elements by power polynomial

Anvar Rakhmatullaev ${ }^{1 *}$, Baxtiyar Abdullayev ${ }^{1}$, Sarvar Rahmatullayev ${ }^{1}$
${ }^{1}$ Tashkent State Technical University named after Islam Karimov, 100095, Uzbekistan, Tashkent, University St. 2A

Abstract

The article discusses some transformations of the equation associated with approximations in the form of a polynomial, which is quickly transferred to a convenient equation compiled with respect to the main input and output values and gives generalized dependencies for a number of nonlinear systems. As an example, a part of a magnetic circuit with longitudinal and orthogonal magnetization fields is given. Relations are presented that connect the inductions B_{1}, B_{2} as input and output quantities, which in turn are directly related to the corresponding voltages U_{1} and U_{2}. For all three magnetic circuits, dependencies are obtained that convert the input and output currents i_{1}, i_{2} into input and output inductions B_{1}, B_{2} with an approximating function in the form of a polynomial of any degree.

1 Introduction

When studying processes in electrical circuits with nonlinear elements, in some cases the problem arises of transforming equations that include approximations of the characteristics of non-linear elements. These transformations are often reduced to obtaining such dependencies (usually connecting the main initial and input values) that are convenient in the study of amplitude, frequency, phase, and other characteristics. However, such transformations often cause great difficulties inherent in the operation of non-linear dependencies [1-4].

The article discusses some transformations of the equation associated with an approximation in the form of a polynomial, which is sufficient to quickly transfer to a convenient equation compiled with respect to the main input and output quantities and give generalized dependencies for a number of nonlinear systems [4-5].

2 The current state of the investigated problem

As an example, three magnetic circuits are given (Fig. 1, 2,3), which are parts of certain electrical circuits.

Fig. 1. Magnetic circuit with longitudinal magnetic magnetization circuits

The material of ferromagnetic cores is assumed to be isotropic and the same for all three magnetic circuits, and the dependence of the induction on the magnetic field strength (magnetization curve) is unambiguous and symmetrical relative to the origin of coordinates [6-8]. As is known, such a magnetization curve can be approximated by a polynomial:

$$
\begin{equation*}
H=\sum_{23.5} a m B^{m} \tag{1}
\end{equation*}
$$

Where: H - magnetic field strength; m - counted integer; B - magnetic field induction; a_{1}, a_{3}, a_{5} - approximation coefficients.

[^0]

Fig. 2. Double core magnetic circuit

Figures 1, 2 show magnetic circuits with longitudinal magnetic circuits of magnetization. The end rods of a three-rod chain are assumed to be the same. The same condition (identity) is imposed on the cores of a twocore circuit. Figure 3 shows a magnetic circuit with orthogonal magnetic fields of magnetization [9-12].

Equation transformations are made for the general case when any energy sources function in primary and secondary electrical circuits (in one of the electrical circuits, instead of sources, autoparametric excitation of oscillations at any frequency can take place) [13-14].

Let us consider the functional connections of a threerod magnetic circuit (Fig. 1):

$$
\begin{align*}
& i_{1}=\frac{\mathbb{1}_{1}}{2 W_{1}}\left(H_{1}^{s}+H_{1}^{v v}\right) \tag{2}\\
& i_{2}=\frac{\mathbb{1}_{1}}{2 W_{2}}\left(H_{1}^{s}+H_{1}^{v s}\right)+\frac{\mathbb{1}_{2}}{W_{2}} H_{2} \tag{3}
\end{align*}
$$

Where: $H_{1}^{s}, H_{1}^{t s}$ - strength of the magnetic field of the extreme rods; l_{1}, l_{2} - the lengths of the extreme and rods, respectively.

Fig. 3. Magnetic circuit with orthogonal magnetic field of magnetization

Let us introduce approximation (1) into (2) and (3).

$$
\begin{gather*}
i_{1}=\frac{\mathbb{1}_{1}}{2 W_{1}} \sum_{m=1.3 .5} a m\left|\left(B_{1}^{s}\right)^{m}+\left(B_{1}^{t r}\right)^{m}\right| \tag{4}\\
i_{2}=\frac{\mathbb{1}_{1}}{2 W_{2}} \sum_{m=1.3 .5} a m\left|\left(B_{1}^{s}\right)^{m}+\left(B_{1}^{s t}\right)^{m}\right|+\frac{\mathbb{I}_{2}}{W_{2}} \sum a m B_{2}^{m} \tag{5}
\end{gather*}
$$

The expressions
$\left(B_{1}^{t}\right)^{m}+\left(B_{1}^{t s}\right)^{m}:\left(B_{1}^{f}\right)^{m}-\left(B_{1}^{f}\right)^{m}$ in (4) and (5) can be converted to, respectively, linking the input and output quantities by induction [15]. For convenience, we accept $B_{1}^{r}=x, B_{1}^{r y}=y$.

Let's introduce new variables:
$a=x+y, b=x-y \quad$ or $\quad x=\frac{a+b}{2}, \quad y=\frac{a-b}{2}$

Then

$$
\begin{aligned}
\mathrm{x}^{m} \pm y= & \frac{(a-b)^{m}}{2^{m}} \pm \frac{(a-b)^{m}}{2^{m}} \\
& =\frac{1}{2^{m}}\left[\left(C_{m}^{0} a^{m}+C_{m}^{1} a^{m-1} b+C_{m}^{2} a^{m \cdot 2} b^{2}+\ldots C_{m}^{m-1} a b^{m-1}\right.\right. \\
& +C_{m}^{0} a^{3}-C_{m}^{1} a^{m-1} b+C_{m}^{2} a^{m-2} b^{2}+\ldots+C_{m}^{m-1} a b^{m-1} \\
& \left.\left.-C_{m}^{m} b^{m}\right)\right]=\frac{1}{2^{m-1}} \sum_{k=m-1}^{a} C_{m}^{k}(x \pm y)^{k}(x \pm y)^{m-k}
\end{aligned}
$$

Where: $K=m-1, m-3, \ldots 2,0 ; \quad C_{m}^{k}-$ combinations of elements according to K.
So,

$$
\left(B_{1}^{\prime}\right)^{m} \pm\left(B_{1}^{\prime \prime}\right)^{m}=\frac{1}{2^{m-1}} \sum_{k=m-1}^{0} C_{m}^{k}\left[\left(B_{1}^{\prime}\right) \pm\left(B_{1}^{\prime \prime}\right)\right]^{k}\left[\left(B_{1}^{\prime}\right) \pm\left(B_{1}^{\prime \prime}\right]^{m-k}\right. \text { (6) }
$$

Obviously (Fig. 1)

$$
\begin{align*}
& U_{1}=W_{1} S_{1} \frac{d B}{d t} \tag{7}\\
& B_{1}=B_{1}^{t}+B_{1}^{t r} \tag{8}
\end{align*}
$$

$$
S_{1} B_{1}^{y}=S_{1} B_{1}^{t y}+S_{2} B_{2}
$$

Or

$$
\begin{array}{r}
B_{2}=n\left(B_{1}^{s}-B_{1}^{v d}\right) \tag{9}\\
\mathrm{n}=\mathrm{S}_{1} / \mathrm{S}_{2}
\end{array}
$$

And

$$
\begin{equation*}
U_{2}=-W_{2} S_{2} \frac{d B_{2}}{d t} \tag{10}
\end{equation*}
$$

Taking into account (8) and (9), identity (6) takes the form:

$$
\begin{equation*}
\left(B_{1}^{s}\right)^{m}+\left(B_{1}^{v s}\right)^{m}-\frac{1}{2^{m-1}} \sum_{k=m-1}^{0} \frac{c_{m}^{k}}{n^{k}} B_{2}^{k} B_{1}^{m-k} \tag{11}
\end{equation*}
$$

$$
\begin{equation*}
\left(B_{1}^{j}\right)^{m}-\frac{1}{2^{m-1}} \sum_{k=m-1}^{0} \frac{c_{m}^{k}}{n^{m-k}} B_{1}^{k} B_{2}^{m-k} \tag{12}
\end{equation*}
$$

Thus, the expression $\left(\mathrm{B}_{1}^{f}\right)^{\mathrm{m}} \pm\left(\mathrm{B}_{1}^{\text {tr }}\right)^{\mathrm{m}}$ is converted into relations (11) and (12), which relate the inductions $\mathrm{B} 1, \mathrm{~B} 2$ presented here as input and output quantities and, in turn, are directly related to the corresponding voltages U_{1} and U_{2}. [16-18]

Let us introduce identities (11), (12) into (4), (5):

$$
\begin{gather*}
i_{1}=\sum_{m=1.3 .8} \sum_{k=m-1}^{0} \frac{a_{m n} b_{1} c_{12}^{k}}{2^{m} n_{n}^{k} W_{1}} B_{2}^{k} B_{1}^{m-k} \tag{13}\\
i_{z}=\sum_{m=1.3 .5 \ldots \ldots} \sum_{k=m-1}^{0} \frac{a_{m} l_{1} c_{m}^{k}}{2^{m} n^{m-k} \sqrt{2}} B_{1}^{k} B_{2}^{m-k}+\sum_{m=1.3 .5 \ldots \ldots} \frac{a_{m} l_{2}}{\sqrt{2}} B_{2}^{m} \tag{14}
\end{gather*}
$$

For a two-core magnetic circuit (Fig. 2), functional relationships are valid:

$$
\begin{gather*}
i_{1}=\frac{\left.C\left(H_{1}^{\prime}+H_{1}\right)\right]}{2 W_{1}} \tag{15}\\
i_{2}=\frac{C\left[H_{1}^{\prime}-H_{1}\right)}{2 W_{2}} \tag{16}
\end{gather*}
$$

Relations (15) and (16) take the form:

$$
\begin{align*}
& i_{1}=\sum_{m=1,3,5 m} \sum_{k=m-1} \frac{a_{m} 1 c_{m}^{k}}{2^{m} W_{1}} B_{2}^{k} B_{1}^{m-k} \tag{17}\\
& i_{2}=\sum_{m=1,3,5 m} \sum_{k=m-1}^{0} \frac{a_{m} l c_{m}^{k}}{2^{m} W_{2}} \tag{18}\\
& B_{1}^{k} B_{2}^{m-k}
\end{align*}
$$

For a magnetic circuit with orthogonal magnetic fields (Fig. 3), relations (1, 2) hold:

$$
\begin{gather*}
\frac{B_{1}}{H_{1}}=\frac{B_{2}}{H_{2}}=\frac{B}{H} \tag{19}\\
B=\sqrt{B_{1}^{2}+B_{2}^{2}} \\
H=\sqrt{H_{1}^{2}+H_{2}^{2}} \tag{20}
\end{gather*}
$$

Where: B_{1}, B_{2}, B - magnetic inductions of the longitudinal, transverse and resulting magnetic fields, respectively; $\mathrm{H}_{1}, \mathrm{H}_{2}, \mathrm{H}$ - intensities of the longitudinal, transverse, resulting fields, respectively.

Taking into account (19), (20), (1) and some transformations [19-20], we obtain:

$$
H_{1}=B_{1} \frac{H}{B}=\sum_{m=1,1,5 . m} a_{m} B_{2} B^{m-1}=\sum_{m=1,1,5 \ldots m} \sum_{k=m-1}^{0} a_{m} c_{\frac{m-1}{2}}^{1 / 2} B_{2}^{k} B_{1}^{m-k}
$$

$$
H_{2}=B_{2} \frac{H}{B}=\sum_{m=1,3,5 . . .} a_{m} B_{2} B^{m-1}=\sum_{m=1,2,5 \ldots k=m-1} \sum_{m}^{0} a_{m} C_{\frac{m-1}{2}}^{1 / 2} B_{1}^{k} B_{2}^{m-k}
$$

Where: $K=m-1, m-3, \ldots 2,0$.
Or

$$
\begin{align*}
& \dot{i}_{1}=\frac{\mathrm{l}_{1}}{W_{1}} H_{1}=\sum_{m=1,3,5 \mathrm{~m}} \sum_{\mathrm{k}=\mathrm{m}-1}^{0} \frac{\mathrm{a}_{\mathrm{m}} \mathrm{l}_{1} \mathrm{c}_{\mathrm{m} /-1}^{\mathrm{k} / 2}}{\mathrm{~W}_{1}} B_{2}^{\mathrm{k}} \mathrm{~B}_{1}^{\mathrm{m}-\mathrm{k}} \tag{21}\\
& \mathrm{i}_{2}=\frac{\mathrm{l}_{2}}{\mathrm{~W}_{2}} H_{2}=\Sigma_{\mathrm{m}=1,3,5 \mathrm{~m}} \sum_{\mathrm{k}=\mathrm{m}-1}^{0} \frac{\mathrm{a}_{\mathrm{m}} \mathrm{l}_{2} \mathrm{C}_{\mathrm{m} / \mathrm{k}-1}^{2}}{\mathrm{~W}_{2}} B_{1}^{\mathrm{k}} B_{2}^{\mathrm{m}-\mathrm{k}} \tag{22}
\end{align*}
$$

If the characteristic of a nonlinear element is not symmetric with respect to the origin, then the approximating function has terms and about even powers [21-25]. And for even degrees, one can obtain the following identities:

$$
x^{m}-y^{m}=\frac{1}{2^{m-1}} \sum_{k=m-1}^{1} c_{m}^{k}(x+y)^{k}(x-y)^{m-2}
$$

Where: $\mathrm{K}=\mathrm{m}-1 ; \mathrm{m}-3 ; \ldots 5 ; 3 ; 1$;

$$
\mathrm{x}^{\mathrm{m}}+\mathrm{y}^{\mathrm{m}}=\frac{1}{2^{\mathrm{m}-1}} \sum_{\mathrm{k}=\mathrm{m}}^{0} \mathrm{c}_{\mathrm{m}}^{\mathrm{k}}(\mathrm{x}+\mathrm{y})^{\mathrm{k}}(\mathrm{x}-\mathrm{y})^{\mathrm{m}-\mathrm{k}}
$$

Where: $\mathrm{K}=\mathrm{m} ;(\mathrm{m}-2) ;(\mathrm{m}-4) ; \ldots 4 ; 2 ; 0$.

3 Conclusion

In conclusion, the following conclusions can be drawn:

1. For all three magnetic circuits, dependences are obtained that convert the input and output currents i_{1}, i_{2} into input and output inductions B_{1}, B_{2} about an approximating function in the form of a polynomial of any degree;
2. Relations (13), (14) of a three-rod magnetic circuit, (17), (18) of a two-core one, (21), (22) - circuits with orthogonal fields differ only in the form of the coefficients (the term $\sum_{m=1,3,5} \frac{a_{m} l_{2}}{W_{2}} B_{2}^{m \mathrm{~m}} \quad$ in (14) is combined with the first term at $\mathrm{K}=0$, which makes it possible to obtain generalized dependencies for similar magnetic circuits that are parts of certain electrical circuits

References

1. R.Karimov. AIP Conference Proceedings, 2552, 030014, (2022). https://doi.org/10.1063/5.0111533
2. R.Karimov. AIP Conference Proceedings, 2552, 050012, (2022). https://doi.org/10.1063/5.0111524
3. S.Dzhuraev, R.Karimov, and ofters. ElConRus, pp. 1166-1169,
(2022), doi: 10.1109/ElConRus54750.2022.9755782
4. R.Karimov, A. Kuchkarov, and ofters. Journal of Physics: Conference Series, 2094, 052050, (2021). doi:10.1088/1742-6596/2094/5/052050
5. R.Karimov, N.Kurbanova, and ofters. Journal of Physics: Conference Series, 2094(5), 052042, (2021). doi:10.1088/1742-6596/2094/5/052042
6. K.G.Abidov, O.O.Zaripov, and ofters. AIP Conference Proceedings, 2552, 030023, (2022), https://doi.org/10.1063/5.0112385
7. K.G.Abidov, O.O.Zaripov, and ofters. AIP Conference Proceedings, 2552, 030022, (2022), https://doi.org/10.1063/5.0112384
8. K.G.Abidov, O.O.Zaripov, and ofters. E3S Web of Conferences, 289, 07003, (2021), https://doi.org/10.1051/e3sconf/202128907003
9. K.G.Abidov, and ofters. E3S Web of Conferences, 289, 07004,
(2021), https://doi.org/10.1051/e3sconf/202128907004
10. K.Abidov, N.Khamudkhanova. E3S Web of Conferences, 216, 01111, (2020), https://doi.org/10.1051/e3sconf/202021601111
11. K.G.Abidov, O.O.Zaripov, and ofters. E3S Web of Conferences, 216, 01110, (2020), https://doi.org/10.1051/e3sconf/202021601111
12. K.G.Abidov, O.O.Zaripov. E3S Web of Conferences, 139, 01088, (2019), https://doi.org/10.1051/e3sconf/201913901088
13. E.Kh.Abduraimov, D.Kh.Khalmanov. Journal of Physics: Conference Series, 2373(7), 072010, (2022), DOI 10.1088/1742-6596/2373/7/072010
14. E.Kh.Abduraimov. Journal of Physics: Conference Series, 072009, 2373, (2022), DOI 10.1088/17426596/2373/7/072009
15. E.Abduraimov, M.Peysenov, N.Tairova. AIP Conference Proceedings, 2552, 040012, (2022), https://doi.org/10.1063/5.0116235
16. E.Kh.Abduraimov, D.Kh.Khalmanov. Journal of Physics: Conference Series, 2094(2), 022072, (2021), DOI 10.1088/1742-6596/2094/2/022072
17. E.Kh.Abduraimov, D.Kh.Khalmanov, and ofters. E3S Web of Conferences, 289, 07026, (2021), https://doi.org/10.1051/e3sconf/202128907026
18. E.Kh.Abduraimov, D.Kh.Khalmanov. E3S Web of Conferences, 216, 01106, (2020), https://doi.org/10.1051/e3sconf/202021601106
19. E.Kh.Abduraimov. E3S Web of Conferences, 216, 01105 ,
(2020),
https://doi.org/10.1051/e3sconf/202021601105
20. E.Kh.Abduraimov, D.Kh.Khalmanov. Journal of Physics: Conference Series, 1515(2), 022055, (2020), DOI 10.1088/1742-6596/1515/2/022055
21.K.G.Abidov, A.K.Nuraliev, and ofters. Journal of Advanced Research in Dynamical and Control Systems, 12(7), pp. 2167-2171, (2020).
21. A.K.Nuraliev, and ofters. E3S Web of Conferences, 216, 01108, (2020),
https://doi.org/10.1051/e3sconf/202021601108
22. M.Ibadullaev, A.Nuraliev, A.Esenbekov. IOP Conference Series: Materials Science and Engineering, 862(6), 062031, (2020), DOI 10.1088/1757899X/862/6/062031
23. S.Begmatov, D.Khalmanov, and ofters. AIP Conference Proceedings, 2552, 040011, (2022), https://doi.org/10.1063/5.0130666
24. M.O.Atajonov, S.J.Nimatov, A.I.Rakhmatullaev, A.B.Sadullaev, AIP Conference Proceedings 2552, 050014, (2023), https://doi.org/10.1063/5.0112403

[^0]: * Corresponding author: raxmatillo82@mail.ru

