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Abstract: To solve the problem of environmental pollution caused by rising energy demand and explore the impact 
of demand-side resources on system optimal scheduling, based on the EH model, it is of great significance to study 
the integrated demand response strategy, carbon trading mechanism and low-carbon energy uncertainty for the 
operation of IES low-carbon economy. Compared with the traditional load response model, this model has better 
flexibility with the adjustment response. According to the thermal inertia and certain time delay characteristics of 
the heat load, the demand response model of heat load is established. Then, according to the application of the multi-
energy price demand response theory in natural gas system, the optimization model of gas load response is 
constructed. Three different optimization scenarios are set for simulation and comparative analysis, which verifies 
that the township comprehensive demand response  model considering electric and thermal gas load has a 
significant effect on improving the system economy and the absorption capacity of low-carbon energy. 

1.  Introduction 
The new energy system is composed of distributed power 
supply, energy storage device, load, energy conversion 
equipment, monitoring and protection equipment, etc. On 
the premise of ensuring the stability of power, voltage and 
frequency, the autonomous power generation and 
distribution system uses some methods to achieve the 
optimal operation of the system, and has certain self 
adjustment and control functions[1]. The traditional 
energy system has a simple structure, a single type of 
energy, and its operation scheduling is limited to a single 
energy, lacking the coordination and management 
between different forms of energy, which leads to the low 
energy utilization rate of the system. In order to better 
explore China's low-carbon economic development path 
and reduce environmental pollution, researchers in China 
and abroad have done a lot of research on the structure of 
the energy system, multi-energy complementarity, carbon 
emission constraints and uncertainty considerations, and 
have achieved remarkable results. Therefore, the 
Integrated Energy System (IES) came into being. The 
introduction of ES breaks the independence of each energy 
system and realizes multi-energy coupling coordination 
optimization and cascade utilization [2].  

Under the coupling effect of various energy sources in 
the energy Internet, the energy supply and demand tend to 
be stable. The joint planning of multiple energy systems 
using multi-energy systems can increase the absorptive 
capacity of wind power and other low-carbon energy 
sources, and can also effectively alleviate peak power 
consumption, making the operation of multi-energy 
systems more economical and safer. Through the planning 

and layout of multiple energy supply networks, it can meet 
the needs of different users for electricity, gas, heat, cold 
and other energy supply modes, thus improving the energy 
utilization rate and contributing to the coordinated 
optimization and rational utilization of energy. In addition, 
on the premise of meeting the power demand, reducing the 
construction cost and operation cost of a multi-energy 
supply network is an important direction of multi-energy 
system planning in the future [3]. 

In reference [4], Ben-Tal et al. proposed a modeling 
method that uncertain linear programming can be 
transformed through robust equivalence, and confirmed 
that linear programming of ellipsoidal uncertain sets can 
also be processed on RC. Bertsimas et al., based on the 
research of Ben-Tal et al., adjust the conservatism of 
robust solutions according to the probability limit of 
violating constraints, and can easily solve and calculate, 
and also extend this method to discrete optimization 
problems. In reference [5], the interval gap decision model 
is added to the robust model and solved after linearization. 
The results indicate that this method can reduce the 
conservatism and make the uncertainty results more 
reasonable and accurate.  

This paper studies the collaborative optimization of the 
multi-energy micro-grid and the energy storage power 
station, and continues to tap the optimization method of 
regulation capacity on the basis of regulation capacity 
dispatching. Two-level optimal scheduling of micro-grid 
and energy storage is proposed. A bi-level optimization 
model of coordinated regulation capability of the multi-
energy micro-grid and energy storage power station is 
constructed with the objective of maximizing the 
comprehensive operation income and maximizing the 
energy utilization rate of micro-grid and energy storage 
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participating in grid regulation. The improved algorithm is 
adopted to solve the model. In the case simulation, the 
regulation ability of micro-grid and energy storage in the 
multi-scenario of renewable energy grid is analyzed, and 
the superiority of two-level optimization to the regulation 
ability optimization is verified. 

2.  Bi-level programming model for 
regional low-carbon energy 
A large amount of surplus electric energy can not be 
consumed, resulting in energy waste. As a system for 
storing energy, the energy storage device stores surplus 
electric energy on the premise of meeting operational 
constraints, and releases the stored energy during periods 
of tight energy supply and demand, such as peak periods 
of power use, to ease the tension between supply and 
demand. At the same time, it plays the role of energy time 
shift, reducing the energy cost during peak periods of 
power use and improving the flexibility of energy supply 
of source side units. 

Based on the energy hub model, this paper models and 
analyzes the integrated energy system covering multiple 
energy forms of electrical heating, and divides the 
integrated energy system into three parts: energy supply 
side, energy conversion side, and energy demand side. The 
typical structure diagram is shown in Figure 1. 
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Figure 1 Structure of integrated energy system 

The energy supply side includes: wind power, 
photovoltaic, the superior power grid representing the 
power of tie lines, the superior gas grid representing the 
input of natural gas, and the heat network representing the 
centralized heating of pipelines; Energy conversion side 
envelope: energy coupling conversion units such as 
electric to gas, air source heat pump, cogeneration, energy 
storage device, etc; The energy demand side includes: 
electric load, heat load, gas load representing the load 
demand of multi energy users, and schedulable resources 
of multi energy users such as interruptible load, 
transferable load, and convertible load. 

By establishing an interrelated double-layer 
optimization model, because the upper lay and the lower 
layer respectively correspond to different objective 
functions and constraint conditions in the double-layer 
optimization model, an intermediate decision variable is 
introduced as a bridge connecting the upper layer and the 
lower layer to describe the relationship as follows: 
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Where, ( , )f x y  is the load capacity that can 
participate in the excitation response; X and y are the 
decision variables of the upper level model that can 
participate in the incentive response; ( )G x  and ( )H x  
are upper model constraints that can participate in the 
excitation response [6]; 

In the bi-level optimization model, the optimal solution 
obtained by optimizing the lower objective function is 
selected as the decision variable and fed back to the upper 
objective function. The specific process is displayed in the 
following equation. 
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Where, nR  is the total operating cost of incentive 
response. 

The contract shall be signed with township users to 
encourage users to reduce or transfer load during power 
peak. The contract shall include the total transfer amount 
or reduction amount, the time period for participating in 
response, and the liquidated damages for refusing to 
participate in response. 

A bilevel optimization problem is one in which both 
the upper and lower levels have their own optimization 
objectives and constraints. At the same time, for the 
system optimization problem with hierarchical structure, 
the decision variables of the upper level directly act on the 
lower level, resulting in the lower level being constrained 
by the upper level [7]. 

3.  Multi-energy dispatching in villages 
and towns based on demand-side 
response 
Operation and maintenance costs, startup and shutdown 
costs of energy conversion and storage equipment. 
Considering the comprehensive demand response of 
electric, heat and gas loads, an optimization model of 
comprehensive demand response taking into account 
electric, heat and gas loads is established by coordinating 
and optimizing the output of different energy conversion 
equipment in the system. The objective value of the model 
is to minimize the operating cost of the whole system. 

The two-level scale optimal dispatching process of 
township multi-energy system considering demand-side 
response is displayed in Figure 2. 
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Figure 2 Energy planning process block for demand side 

response 

Among them, the input data of dispatching shall 
include the wind and solar forecasting output data, the unit 
configuration parameters in the township multi-energy 
system, and the basic data of demand side load. 
Experimental analysis [8]. 

3.1.  Simulation environment setting 

The comprehensive operation cost of the multi-energy 
micro-grid is 122 yuan/ (MW. h), and the comprehensive 
operation cost of the energy storage power station is 126 
yuan/ (MW. h). Considering that the participation of the 
multi-energy micro-grid and energy storage power station 
in grid regulation can reduce the emission of exhaust 
pollutants from conventional units, Table 1 shows the 
emission density and price of exhaust pollutants, which 
represents the environmental cost of reducing grid 
operation by participating in regulation [9]. 
 

Table 1 Emission intensity and price of exhaust pollutants 
Type of pollutant Emission density/kg/MW.h Carbon trading price/yuan 

Co2 875 0.19 
So2 1.7 13.47 
Nox 1.5 53.69 

To facilitate the observation and analysis of the 
regulation capacity of the multi-energy micro-grid and the 
energy storage power station to the power grid, the effect 
of considering the multi-energy micro-grid and energy 
storage power station to participate in optimal dispatching 
is reflected. Therefore, in the operation mode, three 
different scenarios are selected for comparative analysis of 
low-carbon energy output prediction.  

(1) The output power amplitude of low-carbon energy 
is small and basically consistent with the time sequence 
change of load, increasing and decreasing at the same time; 

(2) Low-carbon energy output and load change show 
an opposite trend, one increase and one decrease;  

(3) The output of low-carbon energy is consistent with 
the time sequence of load change, but the change range of 
low-carbon energy is larger. 

3.2.  Analysis of experimental results 

Calculate the curve error E and volatility V index of the 
interactive power curve under different schemes, and the 
calculation results are displayed in Table 2. Because there 
are many kinds of power output units in the township 
multi-energy system, the output power fluctuates greatly, 
so the interaction degree between the power and the 
external network is greater than that of the heating network 
[10]. 

Table 2 Error and volatility indicator results 
Model Indicators E V 

Correction after 
optimization 

Grid interaction 2.7 0.048 
Heating network interaction 2.6 0.013 

No correction Grid interaction 13.4 0.935 
Heating network interaction 4.8 0.047 

Not optimized Grid interaction 114.77 0.825 
Heating network interaction 30.28 0.148 

The day-ahead optimal dispatch model considering the 
price and substitutional demand response can effectively 
reduce the operation cost of the township multi-energy 
system. Adjust the output of different units to stabilize the 
fluctuation of both supply and demand sides according to 
the difference in dispatching time of different types of 
loads, so as to ensure the reliability of unit output 
optimization of the township multi-energy system under 
source-load supply and demand balance. Then, an intra-
day real-time rolling optimization model based on the 
model predictive control algorithm is constructed. 
Through the simulation analysis and the comparison of 
operation schemes, the results verify that the optimal 

scheme proposed in this paper can optimize the interaction 
power with the grid and heating network through real-time 
rolling, follow the day-ahead reference trajectory to the 
greatest extent, and reduce the interaction error and 
volatility with the external network. 

4.  Conclusion 
By studying the double-layer configuration of the model, 
the regulation capacity is further optimized on the basis of 
multi-energy dispatching in villages and towns. Therefore, 
a double-layer optimization model of micro-grid and 
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energy storage is proposed in the intra-day stage. The goal 
is to maximize the comprehensive operation income and 
the goal is to maximize the energy efficiency. Through the 
upper decision quantity acting on the lower energy 
utilization rate, the output results of the lower optimization 
results also affect the upper operating income, so the 
regulation capacity optimization is realized by means of 
mutual decision-making. Finally, the simulation results of 
an example indicate that the comprehensive operation 
benefits of the multi-energy micro-grid and the energy 
storage power station are improved by using the bi-level 
optimization model.  

For the demand-side response, although this paper 
considers the scheduling capacity of demand-side 
resources at different time scales, it does not consider the 
uncertainty of load participation in demand response and 
the uncertainty of flexible load response. In future work, 
the output and solution methods of uncertainty in complex 
models will be researched further. 
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