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Abstract. Hydrogen energy is an efficient and renewable clean energy source, and the key issue for its 
application right moment is the development of hydrogen storage technology with high density and safety. 
Among many available hydrogen storage materials, metal complex hydrides with the advantages of high 
hydrogen storage capacity and good safety, are promising for future applications. However, high-capacity 
hydrogen storage composites suffer from disadvantages such as high hydrogen release temperature and poor 
reversibility, which severely limit their application. This paper provides a detailed summary of existing 
approaches to improve the kinetic and thermodynamic properties of NaBH4 for hydrogen storage, including 
the addition of catalysts, the incorporation of appropriate reactants and the preparation of nanoscale NaBH4, 
as well as an outlook on the future direction of pyrolysis. 

1. Introduction 
Energy shortage will be one of the major problems 
confronting human society in the 21st century, with the 
world's energy demand expected to nearly double by 2050. 
Currently, the structure of energy consumption is shifting 
from monoculture to diversification. Hydrogen as a fuel 
energy source has many advantages such as wide source, 
high combustion value, and minimal harm to the 
environment [1]. 

The energy produced by chemical combustion per unit 
mass of hydrogen (142 MJ/kg) [2] is three times greater 
than that produced by burning the same mass of gasoline 
(47 MJ/kg). For borohydrides, hydrogen exists as a 
covalent bond in [BH4]-, resulting in a high mass hydrogen 
storage density and volume hydrogen storage density. 
NaBH4, with a bulk density of 113 kg/m3 and a weight 
density of 10.6 wt%, is regarded as a very promising solid 
hydrogen storage material and has piqued the interest of 
researchers [3]. The complete decomposition of NaBH4 
and the reaction equation are as in (1), 
NaBH4→Na+B+2H2       (1) 

The operating temperature of NaBH4 for hydrogen 
release typically exceeds 500 °C due to its high 
thermodynamic stability and slow kinetics. More 
importantly, the hydrogen produced by NaBH4 is very 
limited due to phase separation and sodium evaporation 
during dehydrogenation [4]. In this paper, we take sodium 
borohydride (NaBH4) with high hydrogen storage density 
as the research object and review the catalyzing, 
compositing [5, 6], and nano-confining [7] approaches to 
improve the reaction thermodynamic and kinetic 
properties of NaBH4, with the primary objective of 
improving the performance of NaBH4 to achieve its 
efficient and reversible hydrogen storage.  

2. CATALYSIS 
A good catalyst accelerates hydrogen physisorption and 
chemisorption on the adsorbate's surface and allows 
hydrogen diffusion within the adsorbate. Thus, the 
adsorbate's uptake is accelerated. The effect of catalysts 
such as TiH and TiF on the dehydrogenation of NaBH4 
was investigated by Mao et al [8]. Christian et al. found 
the hydrogen storage capacity of NaBH4@Ni composite 
reached 5% [9]. It was also confirmed that the core-shell 
NaBH4@m (m = Co, Cu, Fe, Ni, Sn) can achieve cyclic 
stability for at least several cycles [10]. Khazaei et al. 
discovered that pre-hydrogenated graphene substituted 
with Li atoms has a hydrogen storage capacity of 3.8 wt% 
[11]. 

The addition of a new catalyst to the hydride results in 
a homogeneous dispersion on the surface and interface of 
the hydride, facilitating hydrogen decomposition and 
recombination. For example, the addition of NdF3 reduces 
the enthalpy of hydrogen release of NaBH4 from 100 
kJ/mol H2 for pure NaBH4 to 86.4 kJ/mol H2 for the 
NaBH4-3NdF3 system [5]. Furthermore, Milanese et al. 
investigated the effect of MgF2 on the hydrogen 
adsorption properties of NaBH4, focusing on the fact that 
the decomposition temperature of NaBH4 was reduced by 
30 °C with the addition of MgF2 [12]. Zhu et al. 
discovered that ball-milled BN compounds have a 
hydrogen storage capacity of 3.1 wt% at 175 °C for 
NaBH4 [13]. Meanwhile, Ali et al. improved the 
hydrogenation performance of NaBH4 by adding 10% wt 
MgFe2O4 as a catalyst, the hydrogen storage capacity was 
6.2 weight percent in 60 minutes [14]. 
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3. COMPOSITING 
Despite its good properties, the application of NaBH4 is 
limited by its high enthalpy of decomposition (106.8 
kJ/mol H2), excessive thermodynamic stability, and 
higher dehydrogenation temperature (1 bar > 500 °C) [15]. 
The addition of one or more complex hydrides to form 
"active hydride composites" can lower the hydrogen 
release temperature and improve the hydrogen release 
kinetics of NaBH4 [16, 17]. 

Compared to pure NaBH4, the hydrogen storage 
performance of NaBH4-LiAlH4, NaBH4-MgH2, and 
NaBH4-CaH2 composite hydrogen storage systems, 

formed by adding LiAlH4, MgH2, or CaH2, was greatly 
improved. In this regard, Gorroni et al demonstrated that 
when NaBH4 was composited with MgH2, the starting 
desorption temperature was reduced to 330 °C [18]. Also, 
the NaBH4/LiAlH4 system released hydrogen at a lower 
temperature than pure NaBH4 [15]. Yahiya et al. 
discovered that the NaBH4-Li3AlH6 complex could 
achieve 4.1 wt% capacity in 60 minutes at 420 °C [19]. 
The absorption kinetic curve is shown in figure 1, the 
optimum molar ratio for the NaBH4-Li3AlH6 destabilized 
system was 1:1, and it disintegrated in two levels: Li3AlH6 
decomposed at 170 °C and NaBH4 decomposed at 400 °C. 

 
Figure 1  (a) Milled NaBH4 and NaBH4-Li3AlH6 absorption kinetics profiles at 330 and 430 °C under 30 atm pressure 

(b) profiles of the milling NaBH4 and NaBH4-Li3AlH6 desorption kinetics at 330 °C and 430 °C under 1 atm pressure [19] 
In another study, Mao et al. demonstrated that the 

CaB6 formed by the addition of CaH2 or Ca(BH4)2 during 
heating destabilized NaBH4 [15]. On the other hand, the 
regeneration of metal borides was much easier than 
monomeric boron because the energy required to open the 
metal-B bond was lower than that required to open the B-
B bond [20]. The generation of metal borides, such as 
AlB2, MgB2 and CaB6, is crucial for the reversible 
performance in the above-mentioned systems when 
hydrogen is released. In this case, in addition to AlB2, 
MgB2 and CaB6, other metal borides such as LaB6, CeB6, 
NdB6, PrB6, PrB4, SmB4, GdB4 and YbB4 may also favor 
the reversible hydrogen storage of NaBH4. Meanwhile, 
Lanthanide hydrides such as YH2 and CeH2 [21], LaH2 

[22], and GdH2 [23] have been shown to improve the 
reversible hydrogen release properties of NaBH4. 

In addition, Manoharan investigated efficient 
hydrogen storage on non-carbon (Ah-BN) and storage 
media containing NaBH4, where the presence of Ah-BN 
greatly reduced the decomposition temperature of NaBH4 
with a hydrogen storage capacity of 3.8 wt% (similar to 
the hydrogenation setup of Sievert). The hydrogen storage 
schematic of NaBH4/Ah-BN is shown in figure 2 [24]. 
Zheng et al. used multi-hydroxyl xylitol to make hydrogen 
easily available from NaBH4 below 80 °C effectively, 
proposing a new strategy to destabilize NaBH4 by multi-
hydroxyl xylitol [25]. 

 
Figure 2 Schematic illustration of hydrogen storage press of 

NaBH4/Ah-BN [24]. 
 

 

 

2

E3S Web of Conferences 385, 04025 (2023) https://doi.org/10.1051/e3sconf/202338504025
ISESCE 2023



 

4. Nano-confinement 
NaBH4 is difficult to use for practical solid hydrogen 
storage due to its poor adsorption kinetics and 
thermodynamics [26]. Recent research has discovered that 
controlling the size of metal hydrides on the nanoscale can 
significantly improve their ability to store hydrogen. Chen 
et al. created a nanosheet derived from the carbonization 
of NiCo-MOF nanosheets. The nanosizing of NaBH4 in 
NiCo-NC not only led to the homogeneous formation of 
NaBH4 NPs but also made the NPS uniformly distributed 
inside NiCo-NC, facilitating the thermodynamically 
unstable reaction between NaBH4 and NiCo alloy NPs 
[27]. 

 
Dorthe et al. produced NaZn2(BH4)5 and NaZn3(BH4)3 

bimetallic borohydrides by ball milling of NaBH4 and 
ZnCl2 [28]. Then, the hydrogen release properties of 
NaBH4 were improved by loading NaZn3(BH4)3 into 
microporous SBA-15 [29]. Jeon et al. successfully 
encapsulated magnesium nanocrystals in a polymer, 

which rapidly absorbed hydrogen and maintained a stable 
high capacity over three cycles [30], while nano-
crystallization experiments were performed by infiltrating 
NaBH4 into the microporous pores to obtain NaBH4 
nanoparticles with lower dehydrogenation temperature 
and better reversibility. However, this approach is still 
very limited due to its contamination caused by emitted 
by-products [31]. 

Chong et al. investigated novel hydrogen storage 
composites in which the hydride was nanowrapped by 
graphene, which limits the separation/polymerization of 
the hydride phase and improves the 
dehydrogenation/rehydrogenation performance of 
graphene-catalyzed hydrogenation, while also effectively 
preventing the leakage of dehydration products. It was 
found that the pure complex could reach a hydrogen 
production capacity of 7.0 wt% at 350 °C and 4 MPa with 
an initial hydrogen release temperature of 40 °C and a 
significant desorption effect after reaching 200 °C. The 
hydrogen absorption kinetic curves and cycling 
performance over six cycles are shown in figure 3, in 
addition, no by-products were found in the process [32]. 

 

 
Figure 3 a) H2 desorption cycling 
p r o p e r t y  o f  N a B H 4 @ g r a p h e n e .  

b) NaBH4 @ graphene for six cycles of hydrogen 
uptake kinetics [32]. 

 

5. Summary and outlook 
This paper investigates the advantages and disadvantages 
of NaBH4 for hydrogen storage. On the one hand, it is 
described in detail that the thermodynamic and kinetic 
properties of NaBH4 for dehydrogenation and 
rehydrogenation are greatly improved using catalysis and 
compositing. On the other hand, by controlling the size of 
the metal hydride at the nanoscale, its hydrogen storage 
capacity can be stellarly improved. This nano-
encapsulation prevents the agglomeration, dispersion, and 
loss of NaBH4 during dehydrogenation and 
rehydrogenation, especially the volatilization of Na at 
higher temperatures, thus improving the reversible storage 
capacity of NaBH4. This paper provides a theoretical basis 
for the future selection of appropriate additives to 
optimize the hydrogen storage performance of metal 
boron hydride. Although some progress has been made in 
the study of NaBH4 hydrogen storage, there is still much-
uncharted space to be explored. According to the previous 
discussion, the hydrogen storage performance of this 
material can be improved or extended in the following 
ways. 

1. Although the addition of catalysts or mixed 
hydrides to light metal borohydrides can effectively 
improve their hydrogen storage properties, there is a large 
gap between the hydrogen storage performance of existing 
hydrogen storage systems and their actual use, so it would 
be of great practical importance to conduct extensive 
research in this area to find the best hydrogen storage 
material system. 

2. The proportion of the second hydride in the 
composite system should be reduced, and the 
thermodynamic and kinetic properties of the system 
should be improved by adding other small amounts of 
catalysts to increase the hydrogen storage capacity of the 
system. 

3. The preparation and experimenting conditions 
should be optimized to keep increasing storage capacity, 
lowering the operating temperature, and improving the 
kinetics of nanoscale NaBH4. 
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