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Abstract. In this study, hyperspectral datasets are simulated from 
multispectral data using a spectral reconstruction approach which is a 
sensor-independent technique.  This technique makes use of information 
from atmospherically corrected multispectral Remote Sensing (MRS) data 
and normalized ground spectra for the simulation of HRS data. In this 
study EO-1, the ALI dataset was used for the simulation of hyperspectral 
Remote Sensing (HRS) data to discover the Udaipur region’s unique 
minerals. A total of 61 spectral bands with 10 nm bandwidth were 
simulated. The simulated HRS data were validated using visual 
interpretation, statistical and classification approaches. Simulated HRS 
data from EO-1 Advanced Land Imager (ALI) has shown a high 
correlation with EO-1 Hyperion data. Spectral Angle Mapper (SAM) 
classification was also performed on simulated hyperspectral data for 
mineral mapping. It was observed that simulated hyperspectral data have 
shown comparable results with Hyperion and are better than their 
corresponding multispectral datasets. 

1 Introduction 

Multispectral Remote Sensing (MRS) from historical overview can be used for mineral 
mapping purposes [1]. A new era started in remote sensing when Hyperspectral Remote 
Sensing sensors emerge as an admirable make used for the congregation of contiguous 
spectral bands among the slender bandwidth to ranges from visible to Short Wave Infrared 
(SWIR) of the Electromagnetic Spectrum (ES) [2]. The multispectral data is enabled to 
wide-ranging to investigations the global earth surface is a peculiarity with the intention of 
embarrassed to collected with coarser bandwidth resolution datasets. HRS delivers spectral 
data comprising many bands in a solitary congregation as well as it has been a large area of 
applications visa-viz. mineralogy, reconnaissance, horticulture, and target recognition [2]. 
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The hyperspectral data applications of wide ranges distant from the sensors also have a few 
limitations. The large data storage capacities are required for sensitive detectors, Fast 
computers which make the acquisition and processing unwieldy and excessive [3]. In the 
present scenario, only one space-borne hyperspectral sensor i.e. EO-1 Hyperion with a 30m 
spatial resolution [3,4] and narrow swath (7.5 km) are available because a set of 
multispectral sensors providing the data among the comparable spatial resolution datasets is 
about the globe over the past few decades. The multispectral datasets due to the availability 
of enormous; it is certainly to need processing and simulate the hyperspectral data it is 
utilize the multispectral data with a bigger swath and high spatial resolution for detailed 
mineral mapping studies [5–8]. The identification and discrimination of hyperspectral data 
is to simulate the restrained variation pure spectra of a variety of features it will be present 
over the earth surface. Very few attempts were made in the past few years in the geo 
mineralogy field for simulation hyperspectral data using multispectral data. The technique 
takes place some methods using by spectral unmixing also various algorithms. 

The Spectral unmixing is a method used for [9] finding the proportion of land surface 
and geological feature present inside a mixed pixel. A pixel in any satellite image is 
considered to be to mixed pixel when it has more than one land surface and geological 
feature. The occurrence of pure pixel is rare in the satellite data with a spatial resolution of 
30m and the probability of more heterogeneous features within a single pixel increases with 
decreasing spatial resolution. Various unmixing techniques have been evolved for feature 
identification and extracting their percentage contribution in the mixed pixels of satellite 
data. Detailed mineral mapping is possible to find rare geo mineral rocks using simulated 
HRS data from MRS data. The main objective is mineral mapping using simulated to 
hyperspectral data from the multispectral data [4,10]. To Simulation of hyperspectral data 
from EO-1 ALI data and validation of simulated hyperspectral data with EO-1 Hyperion 
data using visual interpretation, statistical and spectral separability analysis and 
classification approaches. Comparative analysis of mineral map generated using EO-1 ALI 
multispectral data, simulated hyperspectral data from EO-1 ALI data and EO-1 Hyperion 
data. 

Materials and data used. 
To achieve the objective in the present study the following satellite data products, 

ancillary data, software and field surveyed data have been used. 
The Earth Observation EO-1 Hyperion sensor has been developed by NASA’s new 

millennium program in November 2000 [4]. The Hyperspectral Imager (Hyperion) 
instrument provides high quality data calibrated to sustain the inference of Earth observing 
missions of hyperspectral technology. The Hyperion sensors used to push broom 
spectrometer to scan the earth features and every image has to capture the spectrum line 
30m along-track by 7.5 km [4]. There are 242 unique spectral spectrums covering as 357 – 
2576 nm. The Level 1 Radiometric product has a total of 242 bands but only 198 bands are 
calibrated and overlap among the SWIR and VNIR focal planes and 196 of the unique 
channels to calibrated the range of SWIR 77-224 and 8-57 VNIR [11]. For the explanation 
are not calibrate of all 242 spectrum channels is mostly due to the detector’s low 
responsively (Table 1). The bands are doing calibrate as a set of zero in those channels [11]. 

 
Table 1. Specification of EO-1 Hyperion. 

Sensor altitude  705 Kms No. of rows  256  
Spatial resolution  30 meters No. of columns  3128  
Radiometric Resolution  16 bits  VNIR  0.45-1.35 μm  
Swath  7.5 Km SWIR  1.40-2.48 μm  
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The Multispectral (MS) Advanced Land Imager (ALI) the instrument is the principal 
instrument in the first EO-1 (Earth Observation-1) satellite [1]. The panchromatic 
spectrometer and multispectral is highly integrated into wide-angle optics that employs to 
ALI instrument [4]. In operation of push broom fashion with a swath width of 37 km and 
the orbital plane of 705 km of the earth surface. It has nine MS bands plus a Panchromatic 
(Pan) band, three more than ETM+, but does not have the thermal band. The MS bands of 
spatial resolution are the same as that of ETM+ (30 m) but it is better in the Pan band (10 m 
versus 15 m) (Table 2). 

Spectroradiometer (SVC HR 1024) features. The HR-1024 from the Spectra Vista Corp. 
(SVC) is their newest high-performance single-beam field spectroradiometer measuring 
over the visible to short-wave infrared wavelength range (350-2500nm). We are using the 
data pre-processing ENVI 5.0 and ArcGIS for creating maps. 

Table 2. Specification of EO-1 ALI. 

Band  Wavelength(μm)  Ground Sample Distance(m)  
PAN  0.48 - 0.69  10  
MS - 1'  0.433 - 0.453  30  
MS - 1  0.45 - 0.515  30  
MS - 2  0.525 - 0.605  30  
MS - 3  0.63 - 0.69  30  
MS - 4  0.775 - 0.805  30  
MS - 4'  0.845 - 0.89  30  
MS - 5'  1.2 - 1.3  30  
MS - 5  1.55 - 1.75  30  

2 Materials and methods 

The methodological approach is followed to data modeling and simulation of HRS data 
from MRS data using various techniques of processing satellite imagery [1]. The research 
has been divided into four phases: Data pre-processing e.g., ground observation data, 
hyperspectral simulation data and producing the mineral mapping. A detailed description of 
the methods adopted for the present study is enlightened in the block diagram in Figure 1. 

 

Fig. 1. Flowchart of the methodology. 
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3 Results and discussion 

The Fast Line-of-sight Atmospheric Analysis of Hypercubes (FLAASH) atmospheric 
correction of EO-1 Hyperion data and EO-1 ALI model is used. Results before the 
discussion of spectral profiles anomaly and after the atmospheric correction of the datasets 
were compared by considering the atmospheric absorption and diagnostic absorption 
feature. 

Weighted fractional coefficient images generated for each multispectral dataset after 
linear unmixing process. Each pixel in the fractional coefficient image is showing its 
abundance of each end member (vegetation, water, urban & agriculture). The abundance 
value ranges from zero to one. The pixels appearing brightest in the image corresponds to 1 
i.e., showing maximum abundance whereas the pixel appearing darkest correspond to 
ground spectra which is submissive or doesn’t contribute any abundance in the pixel. 

From the EO-1 ALI, simulated data have been overall 61 spectral bands in the common 
wavelength range as of EO-1 Hyperion data [10]. The simulated HRS data is compared 
with EO-1 Hyperion data and it is observed that most of the bands appear same while 
preserving tone, texture, and shape. It observed that the spectra of randomly selected land 
features are retaining the diagnostic absorption characteristics. 

Correlation between EO-1 Hyperion and simulated HRS data from EO-1 ALI data is 
calculated for validation of results. The spectral bands simulated to demonstrate a very high 
correlation indicating was observed for good simulation of the hyperspectral bands. The 
values of correlation coefficients for each simulated band from EO-1 ALI and EO-1 
Hyperion band is given in the Table 3. 

 
Table 3. Correlation between EO-1 Hyperion and Simulated HRS from ALI. 

Bands  Correlation  Bands  Correlation  Bands  Correlation 
1 0.71 22 0.85 43 0.81 
2 0.82 23 0.85 44 0.81 
3 0.90 24 0.86 45 0.82 
4 0.91 25 0.86 46 0.82 
5 0.91 26 0.87 47 0.82 
6 0.90 27 0.87 48 0.82 
7 0.90 28 0.86 49 0.82 
8 0.90 29 0.85 50 0.81 
9 0.89 30 0.82 51 0.81 
10 0.89 31 0.82 52 0.82 
11 0.89 32 0.82 53 0.82 
12 0.90 33 0.81 54 0.82 
13 0.90 34 0.81 55 0.81 
14 0.91 35 0.81 56 0.81 
15 0.87 36 0.78 57 0.81 
16 0.87 37 0.78 58 0.81 
17 0.87 38 0.80 59 0.81 
18 0.83 39 0.81 60 0.61 
19 0.81 40 0.81 61 0.61 
20 0.79 41 0.81   
21 0.85 42 0.81   

 
In the study, spectral analysis has been carried out and to find out the comparison 

between image spectra of hyperspectral data (EO-1 Hyperion and simulated HRS data from 
MRS data) and field spectra of various mineral features. Equal weightage of 0.33 was given 
while performing spectral separability analysis using SAM. 
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Spectral Angle Mapper method has been used for classifying all the multispectral and their 
corresponding simulated hyperspectral datasets beside with Hyperion data for cross-
validation. The classification results are shown from figures 2-5 the classifier outputs were 
further subjected to accuracy assessment and the results are shown in Tables 4-6. 
 

  
Fig. 2. Classified EO-1 Hyperion data. 

 

 
Fig. 3. Classified EO-1 ALI data. 
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Fig. 4. Classified simulated HRS data (from EO-1 ALI). 
 

Table 4. Accuracy assessment of all classified results. 

Spatial resolution  Classified Map  Overall Accuracy  Kappa Coefficient  
30 m  EO-1 Hyperion 72.402 0.6320 
30 m  Simulated HRS (from 

EO-1ALI) data  
81.63 0.725 

30 m EO-1 ALI 67.11 0.602 

 
Table 5. Accuracy Assessment of EO-1 Hyperion. 

Class Producer’s Accuracy User’s Accuracy 
Vegetation 94.74 80.00 

Water 68.97 100 
Urban 63.64 66.67 

Phyllite 70.45 100.00 
 

Table 6. Accuracy Assessment EO-1 ALI& simulated HRS (from EO-1ALI) data. 

 
 

Class 

EO-1 ALI data simulated HRS (from EO-1ALI) data 
Producer’s 
Accuracy 

User’s Accuracy Producer’s Accuracy User’s Accuracy 

Vegetation 84.44 97.44 91.43 99.56 
Water 100 100 100 100 
Urban 67.57 100 76.36 75.00 

Phyllite 34.78 100 73.08 67.86 
Quartzite 0 0 51.47 81.40 

 

 

1 2 

1 2 

1 

2 
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Fig. 5. Comparative analysis of all the classified data and google earth image. 
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Following observations are made from the classification and accuracy assessment 
results:  

•  Overall accuracy and kappa coefficient of all the classified products obtained from 
simulated HRS data is improved as compared to their corresponding classified 
products derived from multispectral data.  

•  The extent of misclassification which was observed in the classified MRS products 
are reduced significantly in the classified products of simulated HRS data.  

•  Majority of mineral class phyllite has shown improved classification results in the 
classified products generated from simulated data.  

•  The classified result is obtained from the pure spectra analysis to simulated 
products are able to discriminate minerals and land use land cover (LULC) classes 
of similar nature e.g., urban which are limitation of products generated from 
multispectral dataset. 

4 Conclusions 

The research work has been carried out to discuss the summary of the objectives 
accomplished with the scope of future advancement. It involves to the simulation of HRS 
data from available multispectral to create the mineral map. Simulated HRS from MRS data 
also it shows how it is effectively influencing mineral mapping application. Finally, the 
simulation HRS data from EO-1 ALI has shown high correlation with EO-1 Hyperion data. 
Spectral Angle Mapper (SAM) classification was also performed on simulated 
hyperspectral data for mineral mapping. It was observed that simulated hyperspectral data 
have shown comparable results with Hyperion and better than their corresponding 
multispectral datasets. 
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