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Abstract. Landslides can be listed as a major natural hazard for the 
Bostanlik district, Uzbekistan characterized by its mountain terrain. 
Currently, a monitoring system is not in place, which can mitigate the 
numerous negative effects of landslides. The current study presents the 
first Earth Observation-based landslide inventory for Uzbekistan. We 
applied a random forest Object-Based Image Analysis (OBIA) on very 
high-resolution GeoEye-1 Earth observation data to detect surface 
displacement. While performing 10-fold cross-validation to assess the 
classification accuracy. Our results indicate very high overall accuracy 
(0.93) and user’s (0.87) and producer’s (0.91) accuracy for the surface 
displacement class. We determined that 5.5% of the study area was 
classified as surface displacement. The obtained results are highly valuable 
for local authorities for the management of landslides, hazard prevention, 
and land use planning. 

1 Introduction 

Landslides, also referred to as surface displacements, are prominent natural hazards, which 
can be catastrophic to economic activities (i.e. damage to property and infrastructure) and 
human health (i.e. causing death and injuries) and are affecting many countries around the 
world [1]. A landslide is the spatial disposition of sedimentation and weathering areas of 
gravity-induced mass movement processes [2]. Accordingly, landslide detection and the 
application of countermeasures are significant tools for mountain risk engineers [3]. 
Landslide inventory maps should be prepared to know the landslide type, volume, and year 
of occurrence. Furthermore, a historical landslides inventory is important for the analysis of 
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pre- and post-disaster studies [4]. Likewise. Landslide susceptibility and landslide risk 
mapping require accurate landslide inventory maps [5–8]. 

Apart from other natural hazards, the territory of Uzbekistan is prone to landslides. Over 
the past 80 years >2,600 landslide events were documented [9–12]. Around 65% of all 
landslides in Uzbekistan are located in the Tashkent region. The Bostanlik district tops the 
list where most of the landslide events occurred which were triggered by earthquakes, 
snowmelt, or precipitation. The Charvak mountain reservoir is especially susceptible to 
landslide occurrences, in particular near the water body. Therefore, monitoring of 
landslides is essential, and studies like landslide susceptibility and risk mapping can help to 
mitigate and prevent the consequences of natural hazards [5,13]. 

Earth Observation (EO) is widely utilized in environmental sciences, but only during 
the last decade introduced to landslide studies [14]. EO datasets are essential to acquire 
reliable information for high altitude areas without the need for extensive and tedious 
fieldwork. Advanced EO approaches to produce effective results in the field he landslide 
detection, mapping, and analysis. The optical very high-resolution (VHR) EO satellites (i.e. 
WorldView, GeoEye-1) have proven to be very successful for detailed landslide inventory 
mapping [7,15,16]. 

Aerial photos or satellite images with in situ observations are used to prepare landslide 
inventory maps. Visual interpretation of landslides is a time-consuming task therefore 
researchers developed automated landslide detection methods [17]. Different methods used 
for the automated detection of landslides consist of pixel-based and object-based 
approaches. Object-based image analysis methods (OBIA) were proposed for landslide and 
surface displacement mapping by several researchers [11, 25-28, 8]. OBIA is a tool for the 
semi-automatically representation and classification of surface displacement processes, 
utilizing mostly high-resolution satellite datasets. The main concept of OBIA consists of 
segmentation and classification of subsequential segments. This method has proven to be 
effective for landslide mapping and landslide inventories [27]. Hölbling et al. [18] applied 
an OBIA method for landslide mapping in five areas in Austria and Italy using satellite 
imageries of Landsat 7, SPOT-5, WorldView-2/3, and Sentinel-2. The objectives of the 
paper were to compare manual landslide mapping results to automated results. They 
describe advantages and disadvantages and report on similar results between the manual 
and automated classification. Feizizadeh et al. [19] employed OBIA for landslide 
delineation and landslide change detection using temporal data from the IRS-1D, SPOT-5, 
and ALOS sensors in northern Iran. The authors generated landslide maps for 2005 and 
2011 with accuracies of 0.93 and 0.94 respectively and acknowledged the potential of 
OBIA for surface displacement delineation.  

The main scope of the present study is to perform OBIA for surface displacement 
detection for the surrounding area of the Charvak Reservoir an important site in the 
Bostanlik district, Tashkent region, Uzbekistan. This work is the first attempt of performing 
an automated surface displacement or landslide inventory using EO data within the territory 
of Uzbekistan. The main objectives can be summarized as follows: 

• utilizing very high resolution GeoEye1 for the classification; 
• verifying the suitability of OBIA for the land cover classification and surface 

displacement; 
• obtaining detailed surface displacement areas for the study area for further utilizing 
them for landslide susceptibility and risk mapping.  

2 Study area 

The Bostanlik district is located in the north-eastern part of Uzbekistan between 41°00' and 
42°20' North and 69°30' and 71°20' East (Figure 1). The study area measures 4,982 km2 
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and is the largest district in the Tashkent region. The study focuses on a subset of the 
surrounding of the Charvak reservoir for the area of 307 km2 with Gazalkent as the 
administrative center. According to the census of 2013 [20,21], about 160,000 people 
inhabited the area with more than 60% of the residents living in rural areas. 

 

Fig. 1. The study area is located in the Bostanlik district of Tashkent region, Uzbekistan, displayed 
with contour lines and a digital elevation model (SRTM). A and B are photos taken during the field 
mission in northern (A) and northeastern (B) directions showing surface displacements. 
 

The study area, mostly covered by quaternary loess deposits, is vulnerable to erosion 
and landslide processes. The area includes high mountains such as the Western Tien Shan, 
Karzhantau, Pskem, Ugam, and Chatkal. The elevation varies from 568 m to 4,301 m a.s.l. 
(summit of Mt. Adelung). Elevation generally increases from west to east and from south to 
north. The district further belongs to a seismically active zone, resulting in an average 
occurrence of eight earthquakes per year [22]. 

The area is further characterized by a continental climate: annual mean minimum and 
maximum, and absolute minimum and maximum temperatures are -9°C, +21°C, -26°C and 
+46°C, respectively. The total amount of precipitation obtained from metro stations reaches 
up to 800–1200 mm per year and the main drainage system of the area is the Chirchik 
River. Within the district, the Charvak Reservoir covers an area of 40 km2 and stores two 
billion m3 of water [20].  

3 Metodology 

The study area was visited in July 2018 and an extensive set of landslides were cataloged 
and digitized (n=45). Land cover classes were interpreted through a combination of Google 
Earth orthophoto and the GeoEye-1 interpretation. In total, 15 land cover classes were 
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selected and trained in a random forest (RF) model these are displayed in Table 1, including 
the number of segments assigned for training. To select reference data for the surface 
displacement segments, the digitized reference polygons were overlaid with the matching 
segmentation. The remaining numbers of land cover classes were trained by matching 
representative segments to in situ collected data, complemented with orthophoto 
interpretation. Due to the small number of data collected in the field we assigned on 
average 39 training polygons per class.   

Table 1. Description of the land cover classes and several reference polygons for training the random 
forest model. 

Class Description Ref. 
data 

Surface displacement Debris flows, landslides, erosion processes 58 

Bedrock Exposed outcrops of the rocky material 34 

Bare soil Areas of exposed soil and barren fields 37 

Fallow fields Agriculture parcels without any crops 21 

Low-intensity agriculture 
(LIA) 

Areas with the sparse crops 39 

High-intensity agriculture 
(HIA) 

Parcels with the dense crops 26 

Meadows Areas covered by grass and other non-woody plants 30 

Shrub land Areas covered by bushes, shrubs including grasses, herbs 49 

Sparse forest Areas covered with sparse tall trees cover 40 

Dense forest Areas covered with the dense and tall trees 37 

Shadows Shadows from the bedrock, residential and forested areas 43 

Water Water bodies and rivers Mask 

Unpaved roads Roads made from native material e.g., gravel 32 

Paved roads Roads covered with the asphalt 40 

Built-up Residential, commercial, and industrial buildings 56 

 
 GeoEye-1 is a commercial very high-resolution satellite operated by Digital Globe 
established in 2009. The sensor collected data in four multi-spectral channels (red, green, 
blue, and near-infrared) at 2m spatial resolution and one panchromatic channel at 0.5-meter 
spatial resolution. The Digital Globe Foundation provided a data set of the study area 
acquired on 15 July 2016. The data were atmospherically and topographically corrected 
using 606 reference polygons. A water mask was created from the green and Near Infra-
Red (NIR) spectral bands, to remove the water bodies using an empirically selected 
threshold of normalized difference water index (NDWI, eq. 1) proposed by McFeeters [23].  

 

���� =  
���������

���������                                                    (1) 

 
Aster global digital elevation map version 2 (GDEM V2) data with a spatial resolution 

of 1 arc-second was acquired through the Earth Explorer portal operated by the U.S. 
Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center. This 
dataset provides the highest possible spatial resolution, which is open-source, and available 
for the study area. The GDEM V2 was resampled to match the spatial resolution of the 
GeoEye1 data and used to calculate slope and aspect using ArcGIS. 
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The pre-processed GeoEye-1 data was used to calculate both the normalized difference 
vegetation index (NDVI, eq. 2) and green ratio (GR, eq. 3) [24].  
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��� ����                                                    (2) 
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In addition, the VHR satellite data was used to generate texture information. Toscani et 

al. [25] proved an increase in classification accuracy when including coiflets) a member of 
the wavelet family the feature stacks. Wavelet Toolbox in MATLAB for spectral bands to 
produce the mean of horizontal (H), vertical (V), and diagonal (D) detail coefficients. 

For each of the 26 input features (i.e. spectral bands, coiflets, vegetation indices, 
elevation, slope, and aspect) statistical features (n=12) were calculated per object (i.e. 
mean, standard deviation, and percentiles). In total 312 input features were assessed to 
build the RF model. We assessed the RF model with a large number of features, through the 
Mean Decreasing Accuracy (MDA) after which we identified features that contribute to the 
model accuracy while excluding underperforming features, thus creating a robust and 
optimized model. 

VHR EO data is highly suitable for an object-based approach (OBIA) and many authors 
report improved accuracy [26]. OBIA has the advantage of i) significantly increasing the 
number of input features to train the model as information (i.e. statistics) can be extracted 
from an object, and ii) removing the “salt and pepper” effect often encountered in pixel-
based approaches. Therefore, we implemented a segmentation to find meaningful objects 
representing the land cover classes found in the study area. We applied the Large Scale 
Mean Shift (LSMS) segmentation provided by Michel et al. [27] implemented in the open-
source software OTB version 5.4.0  in R version 3.5 as it provides an open-source solution 
to create high-quality segmentation results and does not require a priori knowledge. This 
non-parametric density-based clustering algorithm requires three parameters: (a) Spatial 
Radius (spatial distance); (b) Range Radius (spectral difference); and (c) Minimum Size 
(merging criterion). These criteria were used to group pixels together into the cluster by 
assessing neighboring pixels whose range distance is below the range radius (and optionally 
spatial distance below spatial radius). We used the atmospherically corrected GeoEye1 data 
(bands: NIR, Red, Green, and Blue) and empirically assessed the parametrization until 
representative polygons were produced matching reference polygons recoded during the 
field mission.  

Random Forest is a well-established ensemble Machine Learning Algorithm used in a 
large number of object-based studies. Soil erosion and landslide detection using RF were 
done for several studies.  

RF can be optimized, in terms of accuracy and processing time, by performing a 
parametrization process, therefore reducing the number of input features. The feature 
importance was calculated as Mean Decreasing Accuracy (MDA), which was generated 
within RF by running the model and systematically testing which features impact most the 
Out-Of-Bag (OOB) accuracy of the classification if left out. The MDA values were then 
used for feature ranking and selection, following approaches described by Genuer et al., 
Immitzer et al., and Ng et al. [29].  

To compensate for the relatively small amount of high-quality reference data, we 
applied 10-fold cross-validation. The reference dataset was randomly split into partitions, 
and the RF model was performed ten times using different subsets of respective training 
(90%) and validation (10%) data. Therefore, we generated ten unique combinations, 
without repetition of validation polygons. The omitted polygons for validation were 
assessed by generating confusion matrices derived from the sum of the 10 classification 
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results Foody et al. [30], where after, standard statistical metrics were calculated including 
i)overall accuracy (OA): the total number of correctly classified polygons by the total 
number of reference polygons, ii) user’s accuracy (UA): dividing the number of correctly 
classified polygons for each class by the total number of polygons that were classified in 
that class, iii) producer’s accuracy: dividing the number of correctly classified polygons in 
each class (on the major diagonal) by the number of reference polygons of that class, and 
iv) Kappa: evaluates how well the classification performed as compared to just randomly 
assigning values.  

4 Results and discussion 

The confusion matrix derived from the 10-fold cross-validation (Table 2) displays very 
high User accuracy and Producer’s accuracy for all classes. Confirming its suitability for 
detecting surface displacements (UA: 0.87 and PA: 0.91). The overall accuracy (0.93) and 
Kappa (0.92) of the random forest classification are in line with other published studies 
[18,19]. The mean decreases in accuracy (not shown) indicate that from the 312 input 
features the NDVI is most contributing to the accuracy, appearing ten times in the top 20 of 
best-scoring features. The 20th, 25th percentile, and mean are best performing statistical 
features, all of which appear three times in the top 20. The features derived from the 
ASTER GDEM (V2) did not appear in the final selection, which can be explained by the 
coarse spatial resolution. 
 

Table 2. 10-fold cross-validation confusion matrix. The sum of the reference polygons is shown in 
the columns, while the sum of the classified polygons is shown in the rows. 
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Bedrock 30 0 0 0 0 0 0 0 0 0 0 0 0 2 0.94 

Shadows 0 29 0 0 0 0 0 0 1 0 0 0 0 0 0.97 

Dense forest 0 0 36 1 0 0 0 0 0 0 1 0 0 0 0.95 

HIA 0 0 0 25 0 0 0 1 0 0 0 0 0 0 0.96 

Paved roads 0 0 0 0 38 0 0 0 1 0 0 2 0 0 0.93 
Unpaved 

roads 0 0 0 0 0 29 0 0 0 0 0 0 0 1 0.97 

Fallow fields 0 0 0 0 0 0 21 0 0 0 0 0 0 0 1.00 

LIA 0 0 0 0 0 0 0 35 2 1 0 0 0 0 0.92 

Built-up 1 0 0 0 2 0 0 1 52 0 0 2 0 0 0.90 

Shrub land 0 0 0 0 0 0 0 0 0 47 1 0 0 0 0.98 

Sparse forest 0 1 1 0 0 0 0 0 0 0 38 0 0 0 0.95 

Bare Soil 2 0 0 0 0 0 0 0 0 0 0 31 0 1 0.91 

Meadows 0 0 0 0 0 0 0 2 0 0 0 0 37 1 0.93 
Surface 

displacements 1 0 0 0 0 3 0 0 0 1 0 2 1 53 0.87 
Producer's 

accuracy 0.88 0.97 0.97 0.96 0.95 0.91 1.00 0.90 0.93 0.96 0.95 0.84 0.97 0.91 0.93 
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The land cover classification (Figure 3) corresponds to the in-situ observations. Among 
the 15 land cover classes shrub land, meadows, water, and sparse forest are dominant 
within the study area representing 28.37%, 18.22%, 11.31%, and 10.47% respectively 
(Table 3). Surface displacements were detected in 5,5% of the study area. 

 

Fig. 2. Land cover map of the object-based random forest classification 
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Landslide monitoring is a difficult task within mountainous regions with high altitudinal 
ranges. Therefore, automated landslide inventories are needed for risk assessment pre- and 
post-disaster events [1]. As a highly landslide-prone area, the Bostanlik district is subjected 
to different types of landslides (e.g. translational slides, rotational slides, earth flows, debris 
flows, and debris slides), with various volumes [6,7]. An accurate landslide inventory is a 
preparatory step for a landslide susceptibility study. Manual landslide mapping is time-
consuming and requires expertise, while automated detection provides rapid results with 
limited expert knowledge, which is especially valuable for crisis management. 

 
Table 3. Individual class coverage in hectares and percentages 

Class Area (ha) Area (%) 
Surface displacement 1690.32 5.50% 
Bedrock 1510.04 4.91% 

Bare soil 506.13 1.65% 

Fallow fields 445.41 1.45% 

Low-intensity agriculture (LIA) 1234.75 4.02% 

High-intensity agriculture (HIA) 182.41 0.59% 

Meadows 5603.02 18.22% 

Shrub land 8723.01 28.37% 

Sparse forest 3221.13 10.47% 

Dense forest 586.06 1.91% 

Shadows 1097.84 3.57% 

Water 3476.82 11.31% 

Unpaved roads 458.38 1.49% 

Paved roads 145.80 0.47% 

Built-up 1871.39 6.09% 

 
Most published EO-based landslide susceptibility maps apply pixel-based approaches 

[31]. The role of land classification study in the landslide is essential for determining the 
current scenario and for managing natural resources and environmental problems [32]. Our 
results demonstrate very high accuracy for surface displacement detection using OBIA. In 
line with Hölbling et al. [18] who compared manual and OBIA-based landslide detection 
methods for five study areas in the Alps using EO data with different spatial resolutions, 
achieving producers’ accuracies from 0.70 to 0.95.  

Figure 3 highlights the detected landslides, which were confirmed during the field 
mission. These surface displacements consist of different types of debris flows, landslides, 
and erosion processes. After a detailed analysis of the surface displacement class, we 
determined that the majority of the detected areas are deep-seated landslide bodies and 
shallow landslides (Figure 4). From the classification output, we can observe all 
deformations types, however for differentiating between landslide types expert knowledge 
and in situ observations are required. 
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Fig. 3. Deep-seated landslide bodies and shallow landslides on the GeoEye1 EO data. 

5 Conclusion 

In this study, we present the first automated surface displacement map using OBIA and 
VHR GeoEye1 EO data for the Bostanlik district, Uzbekistan. We reported on the 
suitability of the method to obtain detailed surface displacement information for landslide 
susceptibility and risk mapping. Remote and isolated villages in high-altitude areas are 
especially vulnerable to surface displacements resulting in total cut-off from the outside 
world, obstructing rescue workers and aid efforts. Therefore, mapping landslide hotspots 
near such villages is vital. We conclude VHR optical sensors (i.e. GeoEye-1) and OBIA are 
providing highly accurate results for detecting surface displacements. The obtained result 
can be used and upscaled to a national level to create a detailed landslide inventory and can 
be combined with the existing manual maps.  

In Uzbekistan there are two main agencies for landslide monitoring and forecasting: i) 
the State Service of the Republic of Uzbekistan on geological hazard monitoring from the 
State Committee of the Republic of Uzbekistan for Geology, and ii) the Mineral 
Resources and Ministry of Emergency Situations of the Republic of Uzbekistan. The results 
will be presented to these agencies for their large-scale implementation and regional 
research conducted with the cooperation of the local authorities. 
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