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Abstract.The Machine Learning-Based Wind Turbine Control System 
(MLBWTCS) is a new technology that uses machine learning algorithms 
to optimize the performance of wind turbines. The system collects data 
from sensors installed on the wind turbine to monitor various variables 
such as wind speed, blade pitch angle, generator torque, and power output. 
The data collected is preprocessed and fed into a machine learning model, 
which predicts the optimal settings for the turbine operations. The 
predictions are then used to control the operations of the wind turbine in 
real-time. The MLBWTCS has been shown to improve the efficiency and 
reliability of wind turbines, resulting in increased power generation and 
reduced maintenance costs. This paper presents a detailed description of 
the design and implementation of the MLBWTCS, including data 
collection, preprocessing, feature selection and machine learning model 
selection. 
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1. Introduction 
Wind-energy conversion systems consist of a windmill, a gearbox, and a generator, as 

demonstrated in Figure 1. To establish this nonlinear model, the aerodynamics, tower, drive 
train, and the generator should be considered [1][14]. In the following subsections, these 
subsystems are discussed separately. Finally, a nonlinear state-space model is established. 
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Figure1. Structure of Wind Turbine 

A wind turbine extracts the kinetic energy from the wind by slowing the wind down, 
and transferring this energy into the spinning shaft so it is important to have a good design. 
The available power in the wind that is available for harvesting depends on both the wind 
speed and the area that is swept by the rotating turbine blades[2-4][18]. 

So therefore, the faster the wind speed or the larger the rotor blades the more energy can 
be extracted from the wind. So research can say that wind turbine power production 
depends on the interaction between the rotor blades and the wind and it is this interaction 
that is important for a wind turbine design[5][12][19]. 

2. Related Work 
An adaptive wind turbine power curve model based on k-nearest neighbor (KNN) 

regression was proposed. The KNN model was trained using historical wind turbine data 
and used to predict the optimal power output settings for the turbine. The results showed 
that the KNN model could improve the accuracy of power output predictions compared to 
traditional models[6-8]. 

A recent study reviewed the use of machine learning techniques in wind turbine 
condition monitoring and fault diagnosis[9][11]. The review showed that machine learning 
algorithms, such as artificial neural networks and support vector machines, could be used to 
detect and diagnose faults in wind turbines at an early stage. 

An intelligent wind turbine control system using a fuzzy-neural network was proposed. 
The system used historical wind turbine data to train the fuzzy-neural network, which was 
used to predict the optimal settings for wind turbine operations. The results showed that the 
system could improve the power output and efficiency of wind turbines[10][15]. 

An intelligent control system for wind turbines based on neural network and fuzzy 
inference studied. The system used historical wind turbine data to train the neural network, 
which was used to predict the optimal settings for wind turbine operations. The fuzzy 
inference system was used to adjust the settings based on real-time wind conditions[13][16-
17]. The results showed that the system could improve the power output and efficiency of 
wind turbines. 

3. Research methodology 
The Machine Learning-Based Wind Turbine Control System (MLBWTCS) is a new 

technology that uses machine learning algorithms to optimize the performance of wind 
turbines. The design and implementation of a Machine Learning-Based Wind Turbine 
Control System (MLBWTCS) involves Proposed MLBWTC Several steps: 
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Figure 2.Machine Learning-Based Wind Turbine Control System (MLBWTCS) 

Data Collection 
The data collected by the sensors should be stored in a secure and organized to facilitate 

analysis. This may involve storing the data on a server or cloud-based platform. 

3.1 Data pre-processing using Principal component analysis (PCA) 
Principal component analysis (PCA) is also used in this study to determine the 

important features. PCA is a mathematical tool used to represent the variation of features in 
a dataset by using a small number of factors. The 2D or 3D projection of samples is shown 
by setting the axes (principal components, PCs) as the factors. Principle components are 
constructed in such a sequence, where the first principle component (PC1) holds on to the 
largest possible variance in the dataset. The second principle component (PC2) holds the 
largest possible variance among all the remaining combinations, given that PC2 is not 
correlated with PC1. The subsequent principle components are designed in a similar way. 

3.2 Feature Selection using K-means clustering 
K-means clustering can be used for feature selection in Wind Turbine Control System 

by identifying the most important features that contribute to the performance of the system. 
The following are some steps for using k-means clustering for feature selection: 

1. Identify the features: First, identify the set of features that will be used for the 
analysis. This may include variables such as wind speed, wind direction, blade pitch angle, 
generator torque, and power output. 

2. Normalize the features: Normalize the features to ensure that they are on the same 
scale. This is important for ensuring that the clustering algorithm gives equal weight to all 
features. 

3. Determine the number of clusters: Decide on the number of clusters to use for the 
analysis. This will depend on the specific research question and the complexity of the 
dataset. 
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4. Perform k-means clustering: Use k-means clustering to cluster the data points based 
on the selected features. The algorithm will group the data points into clusters based on 
their similarity. 

5. Evaluate the clustering: Evaluate the quality of the clustering by examining the 
within-cluster sum of squares (WCSS) and the silhouette score. WCSS measures the sum of 
the squared distances between each data point and its assigned Centroid. The silhouette 
score measures the similarity of each data point to its assigned cluster compared to other 
clusters. 

6. Select the features: Finally, select the most important features based on their 
contribution to the clustering. Features that are highly correlated with the clustering can be 
selected for use in the Wind Turbine Control System. 

Overall, the use of k-means clustering for feature selection can help identify the most 
important variables that contribute to the performance of the Wind Turbine Control System. 
This can help improve the accuracy and efficiency of the system by reducing the number of 
variables that need to be considered. 

3.3 K-Nearest Neighbor with a Bagging Regressor  
K-Nearest Neighbor (KNN) with a Bagging Regressor is a machine learning approach 

that can be used for Wind Turbine Control System. The KNN algorithm is a non-parametric 
method used for regression and classification tasks. It works by finding the k-nearest 
neighbors of a data point and using their target values to predict the value of the new data 
point. The Bagging Regressor is an ensemble method that combines multiple KNN models 
to improve the overall performance and reduce overfitting.  

K-nearest neighbor (KNN) is a supervised machine learning model that deduces a 
function from a training sample dataset. KNN is simple and easy to understand and can be 
applied to regression and classification problems but it has a major drawback that will be 
discussed in a later section. Each sample in the dataset has an input vector and a desired 
output value. After the model is trained using the training dataset, the trained model will be 
used to determine the output for any given dataset. 

 Once the distance from the points in the training set has been measured, the model will 
look for the new point that gives the nearest distance between k nearest points. The value of 
k will be used to determine the number of points being measured during training. Hence, it 
is crucial to determine the value of k. A large k will reduce the noise and minimize the 
prediction loss, but will increase the computational cost and time if a large training dataset 
is used; however, a small k will simplify the prediction process and reduce computational 
cost. Hence, the computational time for KNN will become shorter as the size of the dataset 
grows. Validation error is used to determine the value of k to be used in a KNN regressor. 

Next, a bagging tree (BT) regressor is used to improve on the KNN regressor. In a BT 
regressor, multiple data subsets, Di, are constructed from the training dataset from the KNN 
regressor by sampling randomly with replacement and without pruning. This is the 
bootstrap method. These bootstraps will eventually be used to construct a single regression 
tree. All individual trees are then combined in an ensemble. Hence, this method is also 
called the tree ensemble method. The predicted outcome will be averaged over all the trees, 
as shown in Figure 7. Therefore, a BT regressor helped to improve the accuracy of the 
trained model by reducing the variance or errors. 

4. Evaluation Criteria 

1. R-squared (𝑹𝑹𝟐𝟐) score 
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𝑅𝑅2 = 1 −
  𝑦𝑦𝑖𝑖  − 𝑦𝑦 𝑖𝑖 2𝑁𝑁

𝑖𝑖=1
  𝑦𝑦𝑖𝑖  − 𝑦𝑦  2𝑁𝑁

𝑖𝑖=1
 

 Where 𝑦𝑦𝑖𝑖 is the observed outcome, 𝑦𝑦  is the mean if the observed outcome, 𝑦𝑦 𝑖𝑖  is the 
predicted outcome and N is the number of observed outcomes. 

No of Datasets KNN FNN Proposed 
MLBWTCS 

100 25 45 75 
200 35 55 80 
300 45 65 85 
400 55 75 95 
 
Table 1.Comparison table for R-squared (𝑹𝑹𝟐𝟐) score 
The Comparison table 1 of R-squared (𝑅𝑅2) score demonstrates the different values of 

existing KNN, FNN and proposed MLBWTCS. While comparing the Existing algorithm 
and proposed MLBWTCS, provides the better results. The existing algorithm values start 
from 25 to 55, 45 to 75 and proposed MLBWTCS values starts from 75 to 95. The 
proposed method provides greater results.  

 
Figure 3.Comparison chart for R-squared (𝑹𝑹𝟐𝟐) score 

The Figure 3 Shows the comparison chart of R-squared (𝑅𝑅2) scoredemonstrates the 
existing KNN, FNN and proposed MLBWTCS. X axis denote the Dataset and y axis 
denotes the Accuracy ratio. The proposed MLBWTCS values are better than the existing 
algorithm. The existing algorithm values start from 25 to 55, 45 to 75 and proposed 
MLBWTCS values starts from 75 to 95. The proposed method provides the great results. 

4.2 Root Mean Square Error  
The RMSE is a measure of the dispersion of the predicted error, or the standard 

deviation of the predicted error. The RMSE is calculated by using Equation, 

𝑅𝑅𝑀𝑀𝑆𝑆𝐸𝐸 =  1
𝑁𝑁  𝑦𝑦 𝑖𝑖  − 𝑦𝑦𝑖𝑖 2

𝑁𝑁

𝑖𝑖=1
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Where 𝑦𝑦𝑖𝑖 the observed outcome is𝑦𝑦 𝑖𝑖  is the predicted outcome and N is the number of 
observed outcomes. 

No of Datasets KNN FNN Proposed 
MLBWTCS 

100 30 40 79 
200 35 55 83 
300 40 63 87 
400 55 74 97 
Table 2.Comparison table for Root Mean Square Error 
The Comparison table 2 of Root Mean Square Error demonstrates the different values of 

existing KNN, FNN and proposed MLBWTCS. While comparing the Existing algorithm 
and proposed MLBWTCS, provides the better results. The existing algorithm values start 
from 30 to 55, 40 to 74 and proposed MLBWTCS values starts from 79 to 97. The 
proposed method provides greater results. 

 
Figure 4.Comparison chart for Root Mean Square Error 
The Figure 4 Shows the comparison chart of Root Mean Square Error demonstrates the 

existing KNN, FNN and proposed MLBWTCS. X axis denote the Dataset and y axis 
denotes the Accuracy ratio. The proposed MLBWTCS values are better than the existing 
algorithm. The existing algorithm values start from 30 to 55, 40 to 74 and proposed 
MLBWTCS values starts from 79 to 97. The proposed method provides the great results. 

 
 

4.3 Computational Time 
No of Datasets KNN FNN Proposed 

MLBWTCS 
100 60 65 88 
200 65 70 85 
300 70 75 94 
400 75 80 98 

Table 3.Comparison table for Computational Time 
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The Comparison table 3 of Computational Time demonstrates the different values of 
existing KNN, FNN and proposed MLBWTCS. While comparing the Existing algorithm 
and proposed MLBWTCS, provides the better results. The existing algorithm values start 
from 60 to75, 65 to 80 and proposed MLBWTCS values starts from88 to 98. The proposed 
method provides greater results. 

 
Figure 5.Comparison chart for Computational Time 

The Figure 5 Shows the comparison chart of Root Mean Square Error demonstrates the 
existing KNN, FNN and proposed MLBWTCS. X axis denote the Dataset and y axis 
denotes the Accuracy ratio. The proposed MLBWTCS values are better than the existing 
algorithm. The existing algorithm values start from 60 to75, 65 to 80 and proposed 
MLBWTCS values starts from88 to 98. The proposed method provides the great results. 

5. Conclusion 

The Machine Learning-Based Wind Turbine Control System (MLBWTCS) is a 
promising technology that has the potential to revolutionize the wind energy industry. By 
using machine learning algorithms to optimize the operations of wind turbines, the 
MLBWTCS can improve their efficiency, reliability, and performance. The system collects 
data from sensors installed on the wind turbine and uses it to train a machine learning 
model, which predicts the optimal settings for the turbine operations. The predictions are 
then used to control the operations of the wind turbine in real-time. The MLBWTCS has 
Proposed MLBWTCS advantages over traditional control systems, including increased 
power generation, reduced maintenance costs, and improved safety. 
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