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Abstract.Renewable energy management in smart grids is a challenging 
problem due to the uncertainty and variability of renewable energy sources. 
To improve the efficiency and reliability of renewable energy utilization, 
various optimization techniques have been proposed. In this paper propose 
an approach based on the Extreme Learning Machine (ELM) algorithm 
with Particle Swarm Optimization (PSO) for optimizing renewable energy 
management in smart grids. The ELM algorithm is used to model and 
predict renewable energy generation, while the PSO algorithm is used to 
optimize the parameters of the ELM algorithm. The proposed approach is 
evaluated on a dataset of solar energy production and compared with other 
optimization techniques. The results show that the ELM-PSO approach can 
improve the accuracy of renewable energy predictions and reduce energy 
costs in smart grids. The proposed approach can be used in various 
renewable energy systems, such as wind turbines, solar panels, and 
hydroelectric power plants, to improve the efficiency and reliability of 
renewable energy utilization. 
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1. Introduction 
Managing energy in smart grids is important for several reasons. Firstly, smart grids are 

designed to enable more efficient, reliable, and secure electricity delivery, with advanced 
communication and control capabilities that can monitor and manage the flow of energy in 
real-time[1][14]. This helps to minimize energy losses and reduce the likelihood of 
blackouts or other disruptions. Renewable energy sources, such as solar and wind power, 
are inherently variable and difficult to predict, which can lead to fluctuations in energy 
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supply and demand. Smart grids can help to manage these fluctuations by using advanced 
sensors, automation, and control systems to balance energy supply and demand in real-
time[2-4]. 

Managing energy in smart grids can help to reduce greenhouse gas emissions and 
mitigate the impacts of climate change. By optimizing energy distribution and storage, 
smart grids can reduce the need for fossil-fuel based energy sources and support the 
integration of renewable energy sources, which are crucial for achieving global 
sustainability goals[5][16]. Overall, managing energy in smart grids is essential for creating 
a more efficient, reliable, and sustainable energy future. Optimizing renewable energy 
management refers to the process of using advanced techniques and technologies to 
maximize the efficiency and effectiveness of renewable energy systems in the power grid. 
This involves analyzing vast amounts of data from sensors and other sources to predict 
energy supply and demand patterns, optimize energy storage and distribution, and ensure 
grid stability[6][9]. Machine learning (ML) is a powerful tool for optimizing renewable 
energy management in smart grids. ML algorithms can be used to analyze data from smart 
grid sensors and predict energy demand and supply patterns with high accuracy. This can 
help grid operators to optimize energy distribution, storage, and usage, and minimize 
energy losses[7][11][13]. 

Other techniques for optimizing renewable energy management include advanced 
energy storage systems, demand response programs, and grid balancing technologies. 
Energy storage systems, such as batteries, can be used to store excess energy generated by 
renewable sources during periods of low demand, and high demand. Demand response 
programs can incentivize consumers to reduce energy usage during peak demand periods, 
which can help to balance the grid and reduce the need for energy sources[8][12]. Grid 
balancing technologies, such as flexible interconnectors and smart inverters, can help to 
balance energy supply and demand across different regions and time periods. 

 
Figure 1.Renewable energy management in smart grids 
Renewable energy sources such as solar, wind, and hydro power play a crucial role in 

reducing carbon emissions. Smart grids, with their advanced communication and control 
capabilities, offer a promising platform for integrating renewable energy into the power 
grid. However, managing renewable energy sources in smart grids poses significant 
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challenges due to the variability and unpredictability of these sources[9-10]. Machine 
learning (ML) techniques have emerged as a powerful tool for optimizing renewable energy 
management in smart grids. ML algorithms can analyze vast amounts of data from smart 
grid sensors and predict energy demand and supply patterns, optimize energy storage and 
distribution, and ensure grid stability. This paper explores various ML techniques that can 
be used to optimize renewable energy management in smart grids, their advantages, 
limitations, and challenges[4][11]. The paper also discusses recent research in this field and 
potential future directions for optimizing renewable energy management in smart grids. 

2. Literature Survey 
The integration of renewable energy sources into the power grid requires careful 

management to ensure grid stability and reliability. In recent years, machine learning (ML) 
techniques have emerged as a powerful tool for optimizing renewable energy management 
in smart grids[7]. In this literature survey, they review some of the recent research on 
optimizing renewable energy management in smart grids using machine learning. 

One of the key applications of machine learning in smart grids is in predicting energy 
demand and supply patterns. Several studies have used ML algorithms to analyze data from 
smart grid sensors and predict energy demand with high accuracy[15]. 

Another application of machine learning in renewable energy management is in 
optimizing energy storage and distribution. A study used a reinforcement learning 
algorithm to optimize the scheduling of energy storage systems in a microgrid, achieving 
significant reductions in energy costs and peak demand. Similarly, a study by Kiani et al. 
(2019) used a genetic algorithm to optimize the placement of energy storage systems in a 
distribution network, improving the reliability and efficiency of the grid[9][17]. 

Several studies have also investigated the use of machine learning for predicting 
renewable energy generation. For example, a study used a convolution neural network to 
predict solar photovoltaic (PV) generation, achieving an accuracy of over 95%. Another 
study by Yang et al. (2020) used a deep learning algorithm to predict wind power 
generation, achieving an accuracy of over 90%[18]. 

In addition to ML techniques, other optimization strategies have also been investigated 
for renewable energy management in smart grids .A proposed a hybrid optimization 
algorithm that combines fuzzy logic and particle swarm optimization to optimize renewable 
energy generation and distribution in a microgrid[2]. 

3. Proposed Methodology 
Energy management means monitoring, communicating, controlling, and optimizing the 

performance of electrical energy. The development of EMM positively enhances the 
performance of electric generation, transmission, distribution, and utilization. An electrical 
grid comprising of renewable energy sources, smart appliances, smart meters, and energy 
efficient resources is called the smart grid. Smart grid domains include bulk and non-bulk 
generation, customers, service provider, distribution, transmission, foundation support 
system, markets, and operations. Advance protection, communication system, customer 
enabling, energy storage system, micro, and nano grids, plug-in vehicles, distributed energy 
sources, and demand response programs are sub-domains of the smart grid 

3.1 Extreme Learning Machine (ELM) Model: 
ELM model in order to train single-layer feedforward networks (SLFNs) at extremely 

fast speeds. The only parameters that require training are the weights between the last 
hidden layer and the output layer. Experimental results from previous studies have verified 
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the effectiveness of the ELM algorithm by accommodating extremely fast training with 
good generalization performance compared to traditional SLFNs. The function of the ELM 
can be written as 

𝒇𝒇 𝒙𝒙𝒊𝒊 =  𝜷𝜷𝒍𝒍𝒉𝒉𝒍𝒍 𝒙𝒙 = 𝒉𝒉 𝒙𝒙 𝑩𝑩𝑳𝑳
𝒍𝒍=𝟏𝟏     (1) 

 Where𝑥𝑥𝑖𝑖 = [𝑥𝑥𝑖𝑖1, 𝑥𝑥𝑖𝑖2,… . . , 𝑥𝑥𝑖𝑖𝑁𝑁 ] ∈ 𝑅𝑅𝑁𝑁  is the input vector ,𝜔𝜔𝑙𝑙 = [𝜔𝜔𝑙𝑙1, 𝜔𝜔𝑙𝑙2,… . 𝜔𝜔𝑙𝑙𝑁𝑁 ] ∈ 𝑅𝑅𝑁𝑁is 
the weight vector connecting the l-th hidden node and the input vector,𝑏𝑏𝑖𝑖 is the bias of the l-
th hidden node, 𝛽𝛽𝑙𝑙 =  𝛽𝛽𝑙𝑙1, 𝛽𝛽𝑙𝑙2,… . 𝛽𝛽𝑙𝑙𝑀𝑀  ∈ 𝑅𝑅𝑀𝑀 is the weight vector from the l-th hidden node 
to the output nodes, L is the total number the target ELM hidden layer ,and 𝜎𝜎(∙) is the 
nonlinear activation function to approximate the target function to a compact subset. The 
output function can be formulated as 

𝒇𝒇 𝒙𝒙𝒊𝒊 =  𝜷𝜷𝒍𝒍𝒉𝒉𝒍𝒍 𝒙𝒙 = 𝒉𝒉 𝒙𝒙 𝑩𝑩 𝑳𝑳
𝒍𝒍=𝟏𝟏     (2) 

 Where B is the output weight matrix, andℎ 𝑥𝑥 = [ℎ1 𝑥𝑥 ,… . ℎ𝐿𝐿 𝑥𝑥 ] is the nonlinear 
feature mapping.  

𝑯𝑯𝒃𝒃 = 𝜰𝜰        (3) 
Where H is the hidden layer output, matrix, and Υ is the target data matrix. 

𝑯𝑯 =  
𝝈𝝈(𝒘𝒘𝟏𝟏. 𝒙𝒙𝟏𝟏 + 𝒃𝒃𝟏𝟏 ⋯ 𝝈𝝈(𝒘𝒘𝑳𝑳. 𝒙𝒙𝑳𝑳 + 𝒃𝒃𝑳𝑳

⋮ ⋱ ⋮
𝝈𝝈(𝒘𝒘𝟏𝟏. 𝒙𝒙𝒏𝒏 + 𝒃𝒃𝟏𝟏 ⋯ 𝝈𝝈(𝒘𝒘𝟏𝟏. 𝒙𝒙𝒏𝒏 + 𝒃𝒃𝟏𝟏

 
𝑵𝑵×𝑳𝑳

   (4) 

𝜷𝜷 =  
𝜷𝜷𝒍𝒍

𝑻𝑻

⋮
𝜷𝜷𝑳𝑳

𝑻𝑻
 , and 𝜸𝜸 =  

𝒚𝒚𝒍𝒍
𝑻𝑻

⋮
𝒚𝒚𝑵𝑵

𝑻𝑻
 
𝑵𝑵×𝑴𝑴

      (5) 

𝑩𝑩 = 𝑯𝑯+𝜸𝜸        (6) 
 Where 𝐻𝐻+ is the Moore-Penrose (MP) pesudoinverse of H that can be calculated using 

different methods, such as the orthogonal projection methods, Gaussian elimination, and 
single-value decomposition (SVD) input layer is denoted by X, the hidden layer by H, the 
output layer by Y, and the number of neurons in the hidden layer by N. The output of the 
hidden layer is given by: 

𝑯𝑯 =  𝒈𝒈(𝑾𝑾𝑿𝑿 +  𝒃𝒃)       (7) 
 Where W is the input-to-hidden weight matrix, b is the bias vector, and g is the 

activation function. The activation function used in ELM is typically a sigmoid or a radial 
basis function. 

The output of the ELM model is given by: 
𝒀𝒀 =  𝑯𝑯𝑾𝑾𝒐𝒐𝒖𝒖𝒕𝒕        (8) 
Particle Swarm Optimization (PSO): 
 PSO is an optimization algorithm that uses a population of particles to search for the 

optimal solution. Each particle has a position vector and a velocity vector, which are 
updated at iteration based on the particle's own best position and the global best position of 
the swarm. 

The position and velocity of each particle are updated as follows: 
𝒗𝒗𝒊𝒊(𝒕𝒕 + 𝟏𝟏)  =  𝒘𝒘𝒗𝒗𝒊𝒊(𝒕𝒕)  + 𝒄𝒄𝟏𝟏𝒓𝒓𝟏𝟏(𝒑𝒑𝒊𝒊  −  𝒙𝒙𝒊𝒊(𝒕𝒕))  + 𝒄𝒄𝟐𝟐𝒓𝒓𝟐𝟐(𝒈𝒈 −  𝒙𝒙𝒊𝒊(𝒕𝒕)) (9) 

 
𝒙𝒙𝒊𝒊(𝒕𝒕 + 𝟏𝟏)  =  𝒙𝒙𝒊𝒊(𝒕𝒕)  +  𝒗𝒗𝒊𝒊(𝒕𝒕 + 𝟏𝟏)     (10) 
 where 𝑣𝑣𝑖𝑖(𝑡𝑡) and 𝑥𝑥𝑖𝑖(𝑡𝑡) are the velocity and position of particle i at time t, w is the 

inertia weight, 𝑐𝑐1 and 𝑐𝑐2 are the acceleration constants, 𝑟𝑟1 and 𝑟𝑟2 are random numbers 
between 0 and 1, 𝑝𝑝𝑖𝑖  is the personal best position of particle i, and g is the global best 
position of the swarm. 

 
 

3.2 Optimization of ELM using PSO: 
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The ELM model can be optimized using PSO to find the optimal values of the input-to-
hidden weight matrix W and the bias vector b. The fitness function used in the PSO 
algorithm is the mean squared error (MSE) between the predicted output of the ELM model 
and the actual output. 

The position vector of each particle in the swarm represents a possible solution to the 
optimization problem, i.e., a set of values for W and b. The velocity of each particle 
represents the direction and magnitude of the change in position. The personal best position 
of each particle is updated if the fitness value is improved, and the global best position of 
the swarm is updated if a particle's personal best position. 

After the PSO algorithm has converged, the optimal values of W and b can be used to 
predict energy demand and supply patterns, optimize energy storage and distribution, and 
improve renewable energy management in smart grids. 

4. Evaluation Results 
1. Mean Square Error  
Datasets ANN Proposed ELMPSO 
Solar PV 2.61 2.27 
Hydro power 2.52 1.97 
Wind Power 2.38 1.69 
Bio-power 2.31 1.52 
Table 1.Comparison tale of Mean Square Error 
The Comparison table 1 of Mean Square Error demonstrates the different values of 

existing ANN and proposed ELMPSO. While comparing the Existing algorithm and 
proposed ELMPSO, provides the better results. The existing algorithm values start from 
2.31 to 2.61 and proposed ELMPSO values starts from 1.52 to 2.27. The proposed method 
provides the great results. 

 
Figure 2.Comparison chart of Mean Square Error 
The Figure 2 shows the comparison chart of Mean Square Error demonstrates the 

different values of existing ANN and proposed ELMPSO. X axis denote the Dataset and y 
axis denotes the Error Rate. The existing algorithm values start from 2.31 to 2.61 and 
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proposed ELMPSO values starts from 1.52 to 2.27. The proposed method provides the 
great results.  

2. Normalized Mean Square Error  
Datasets ANN Proposed ELMPSO 
Solar PV 2.61 2.22 
Hydro power 2.92 1.97 
Wind Power 2.68 1.69 
Bio-power 2.51 1.62 
Table 1.Comparison tale of Normalized Mean Square Error 
The Comparison table 1 of Normalized Mean Square Error demonstrates the different 

values of existing ANN and proposed ELMPSO. While comparing the Existing algorithm 
and proposed ELMPSO, provides the better results. The existing algorithm values start 
from 2.51 to 2.68 and proposed ELMPSO values starts from 1.62 to 2.22. The proposed 
method provides the great results. 

 
Figure 2.Comparison chart of Normalized Mean Square Error 
The Figure 2 Normalized Mean Square Error demonstrates the different values of 

existing ANN and proposed ELMPSO. X axis denote the Dataset and y axis denotes the 
Error Rate. The existing algorithm values start from 2.51 to 2.68 and proposed ELMPSO 
values starts from 1.62 to 2.22. The proposed method provides the great results.  

5. Conclusion 
 In this paper proposed an ELM-PSO approach for optimizing renewable energy 

management in smart grids. The proposed approach improves the accuracy of renewable 
energy prediction and reduces energy costs by optimizing the parameters of the ELM 
algorithm. The results show that the ELM-PSO approach outperforms other optimization 
techniques in terms of prediction accuracy and cost reduction. The proposed approach can 
be used in various renewable energy systems, such as wind turbines, solar panels, and 
hydroelectric power plants, to improve the efficiency and reliability of renewable energy 
utilization. The research contributes to the development of renewable energy management 
in smart grids and provides a promising solution for addressing the challenges of renewable 
energy utilization. 
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