THEORYTICAL APPROACH ON APPLICATION OF GENERALIZED CLOSED SETS ENVIRONMENTAL LIFESTYLE USING r-NEIGHBOURHOOD IDEALSPACES

THARMAR S¹, Veerasivaji R² & Senthil kumar R³

^{1,3}Departmet of Mathematics, Mohamed Sathak Engineering College, Kilakarai, Tamil Nadu, India.

²Assistant Professor ,Department of Mathematics,Sri Sankara Arts and Science College, Enathur Kanchipuram , India.

Abstract. We introduce in this paper, the new notion of R_I -g-closed sets and obtain some of its characterizations in ideal r-Neighbourhood space and give nice results on R_I -g-closed sets with examples. Finally, we discuss application of R_I -g-closed sets.

Keywords: Relation, I_r-closed set, R_I-g-closed set, R_I-g-open set.

1. Introduction

In 1970, the notion of generalized closed sets introduced by Levine [5] and various Generalized concepts in topology were introduced by Levine [5] and various authors were making modifications in generalized concepts. Lin[6] and Yao[9] introduced the concept of rough sets in neighbourhood system and Hosny[2] generated different topologies by the concept of idealization of j-approximation spaces.

In this paper, we introduce the new notion of R_g^I closed sets and obtain some of its characterizations in ideal r-Neighbourhood space and give nice results on R_g^I closed sets with example. Finally, we discuss application of R_g^I closed sets with an example.

¹Correspondingauthor: <u>tharmar11585@gmail.com</u> * <u>vracvag@gmail.com</u>, srisenthil2011@gmail.com

2. Preliminaries

Definition 2.1. [3] A non-empty collection I of subsets of a set U is called an ideal on U, if it satisfies the following conditions.

(1) $A \in I$ and $B \in I \Rightarrow A \cup B \in I$.

(2) $A \in I$ and $B \subset A \Rightarrow B \in I$.

Definition 2.2. [6] Let U be non-empty finite set and R be an arbitrary binary relation on U. The r-neighbourhood of $x \in U(N_r(x))$ is defined as r-neighbourhood: N_r(x) = {y \in U: xRy}.

Definition 2.3. [6] Let U be a non-empty finite set and R be an arbitrary binary relation on U and $\sum_r: U \rightarrow P(U)$ be a mapping which assigns for each x_r in U its r-neighbourhood in P(U). The triple

(U, R, Σ_r) is called a r-neighbourhood space (in briefly, r-NS).

Theorem 2.4. [6] Let U be a r-NS and A \subset U. Then, the collection $\tau_{\mathbf{r}} = \{A \subset U : \forall p \in A, N_{\mathbf{r}}(p) \subset A\}$ is a topology on U.

Definition 2.5. [2] Let U be a r-NS and a subset $A \subset U$ is called r- open set if $A \in \tau_r$ and the complement of r-open set is called r-closed set.

Definition 2.6 [2] Let U be a r-NS and I be an ideal on U. Then, the collections $\tau_r^I = \{A \subset U : \forall p \in A, N_r(p) \cap A' \in I\}$ is a topology on U.

The r-Neighbourhood space with an ideal I is called ideal r-NS.

Definition 2.7 [2]

(1) Let U be an ideal r-NS and a subset $A \subset U$ is called I_r -open set if $A \in \tau_r^I$ and the complement of I_r -open set is called I_r -closed set.

 $(2)R_r^I(A) = \bigcup \{ G \in \tau_r^I : G \subset A \} = \operatorname{int}_r^I(A)(\operatorname{int}_r^I \text{ is called } I_r \text{-lower approximations}) \}$

(3) $\overline{R_r^l}(A) = \bigcap \{F \in (\tau_r^l)^c : A \subset F\} = cl_r^l(A) (cl_r^l \text{ is called } \mathbf{I_r}\text{-upper}$

approximations).

Lemma 2.8. [2] Let U be an ideal r-NS and A, $B \subset U$. Then

(1)
$$R_r^I(\mathbf{A}) \subset \mathbf{A} \subset \overline{R_r^I}(\mathbf{A}).$$

(2)
$$\overline{A} \subset B \Longrightarrow \overline{R_r^I}(A) \subset \overline{R_r^I}(B)$$

- (3) $A \subset B \Longrightarrow R_r^I(A) \subset R_r^I(B)$
- (4) $\overline{R_r^I}(\overline{R_r^I}(A)) = \overline{R_r^I}(A).$
- (5) $R_r^I(R_r^I(A)) = R_r^I(A).$

3. RI- g-CLOSED SETS

Definition 3.1 Let U be an ideal r-NS and a subset A_r is said to be R_I -g-closed set if $\overline{R_r^I}(A_r) \subset O_r$ whenever $A_r \subset O_r$ and O_r is I_r -open.

The complement of R_I-g-closed set is called R_I-g-open set.

Example 3.2 Let U={Food, Health, Exercise, Sleep} and we get the relation R={(Food, Food), (Food, Health), (Health, Health), (Health, Exercise), (Exercise, Exercise), (Exercise, Sleep), (Exercise, Health), (Sleep, Sleep), (Sleep, Health)} and the ideal I={ \emptyset , Health}.

The neighbourhood of Food is {Food, Health}, neighbourhood of Health is {Health, Exercise}, neighbourhood of Exercise is {Health, Exercise, Sleep} and neighbourhood of Sleep is {Health, Sleep}.

The members of I_r -open sets are {Food}, {Sleep}, {Food, Sleep}, {Exercise, Sleep}, {Food, Exercise, Sleep}, {Health, Exercise, Sleep}, Ø, U and the members of I_r -closed sets are {Food}, {Health}, {Food, Health}, {Health, Exercise}, {Food, Health, Exercise}, {Health, Exercise, Sleep}, Ø, U.

Subset of U (A _r)	$N_r(P), p \in A_r$	$\overline{R_r^I}(\mathbf{A_r})$	A _r ⊂O _r and O _r is I _r -open	Member of R_g^I
				closed
{Food}	{ Food, Health }	Singleton member {Food}	{Food}, {Food, Sleep}, {Food, Exercise, Sleep}	Yes
{Health}	Two members { Exercise, Health}	Singleton member {Health}	{ Exercise, Health, Sleep}	Yes
{Exercise}	{Exercise, Health, Sleep}	{ Health, Exercise}	{Exercise, Sleep} and {Food, Exercise, Sleep} and {Health, Exercise, Sleep}	No
Subset of U (A _r)	$N_r(P), p \in A_r$	$\overline{R_r^I}(\mathbf{A_r})$	A _r ⊂O _r and O _r is I _r -open	Member of R_g^I closed
{Sleep}	{Health, Sleep}	{ Exercise, Sleep, Health,}	{Sleep}	No
{ Food, Health}	{ Food, Health } and { Health, Exercise}	{ Food, Health }	U	Yes
{Food, Exercise}	{ Food, Health } and {Health, Exercise, Sleep}	{Food, Health, Exercise}	{Food, Exercise, Sleep} and U	No
{Food, Sleep}	{ Food, Health } and {Health, Sleep}	U	{Food, Sleep} and {Food, Exercise, Sleep}, U	No
{ Exercise	{ Exercise,	{ Exercise,	{Exercise,	Yes

Health }	Health}, {Exercise, Health, Sleep}	Health}	Health, Sleep}, U	
{Health, Sleep}	{ Exercise, Health}, {Health, Sleep}	{ Exercise, Health, Sleep}	{Exercise, Health, Sleep}, U	Yes
{Exercise, Sleep}	{Health, Sleep}, {Health, Exercise, Sleep}	Health, Exercise, Sleep}	{Exercise, Sleep}, {Food, Exercise, Sleep}, {Health, Exercise, Sleep, U	No
{Food, Exercise, Health}	{ Exercise, Food, Health}, { Health}, {Health, Sleep, Exercise}	{Food, Exercise, Health}	U	Yes
{Food, Exercise, Sleep}	{ Food, Health }, {Health, Sleep} {Sleep, Exercise, Health}	U	{Food, Sleep, Exercise}, U	No
{ Health, Sleep, Exercise}	{Exercise, Health, Sleep}, { Health, Exercise}, {Health, Sleep}	{Exercise, Health, Sleep}	{ Sleep, Exercise, Health}, U	Yes
{ Health, Food, Sleep}	{ Exercise, Health}, {Health, Sleep}, {Food, Health}	U	U	Yes
Subset of U (A _r)	$N_r(P), p \in A_r$	$\overline{R_r^I}(\mathbf{A_r})$	A _r ⊂O _r and O _r is I _r -open	Member of R_g^I closed
Ø	Ø	Ø	All I _r -open sets	Yes
U	U	U	U	Yes

Theorem 3.3 Every I_r-closed set is R_I-g-closed.

Proof. The indication comes from the reality that $\overline{R_r^I}(A_r) = A_r$.

Remark 3.4 In the Example 3.2, the member {Exercise} in R_I -g-closed set but not in I_r -closed.

Theorem 3.5 Let U be an ideal r-NS and $A_r \subset U$. Then $x_r \in \overline{R_r^I}(A_r)$ if and only if $O_r \cap A_r \neq \emptyset$ for every I_r -open set O_r containing x_r .

Proof. Let O_r be an I_r -open set such that $x_r \in O_r$ and $O_r \cap A_r = \emptyset$. Then $A_r \subset U - O_r$ and $U - O_r$ is I_r -closed set and hence $\overline{R_r^l}(A_r) \subset U - O_r$. Since $x_r \notin U - O_r$ which implies $x_r \notin \overline{R_r^l}(A_r)$. Conversely, let $x_r \notin \overline{R_r^l}(A_r)$. Then there exists an I_r -closed set F_r such that $A_r \subset F_r$ and $x_r \notin F_r$. Hence $(U - F_r) \cap A_r = \emptyset$.

Theorem 3.6 If A_r and B_r are R_I -g-closed then

- (1) $A_r \cup B_r$ is R_I -g-closed.
- (2) $A_r \cap B_r$ is R_I -g-closed.

Proof. The reality, $\overline{R_r^I}(A_r \cup B_r) = \overline{R_r^I}(A_r) \cup \overline{R_r^I}(B_r)$ and $\overline{R_r^I}(A_r \cap B_r) \subset \overline{R_r^I}(A_r) \cap \overline{R_r^I}(B_r)$ gives the proof.

Remark 3.7 The collection of R_I-g-closed sets form a topology.

Theorem 3.8 If A_r is R_I -g-closed and $A_r \subset B_r \subset \overline{R_r^I}(A_r)$ then B_r is R_I -g-closed.

Proof. Let $B_r \subset O_r$ and O_r be I_r -open. Then $A_r \subset U$ and A_r is R_I -g-closed. Therefore $\overline{R_r^I}(A_r) \subset U$ which implies $\overline{R_r^I}(B_r) \subset U$. Hence B_r is R_I -g-closed.

Theorem 3.9 Let U be an ideal r-NS and $A_r \subset U$. Then A_r is R_I -g-open if and only if $F_r \subset R_r^I(A_r)$ whenever $F_r \subset A_r$ and F_r is I_r -closed.

Proof. Let A_r be R_I -g-open and $F_r \subset A_r$ and F_r be I_r -closed. Then $U-A_r \subset U-F_r$ and $U-F_r$ is I_r -open. Since $U-A_r$ is R_I -g-closed, $\overline{R_r^I}(U-A_r) \subset U-F_r$ and $U-\underline{R_r^I}(A_r) = \overline{R_r^I}(U-A_r) \subset U-F_r$. Hence $F_r \subset \underline{R_r^I}(A_r)$.

Conversely, let $U-A_r \subset O_r$ where O_r is I_r -open. Then $U-O_r \subset A_r$ and $U-O_r$ is I_r -closed. By hypothesis, we have $U-O_r \subset \underline{R_r^I}(A_r)$ and hence $\overline{R_r^I}(U-A_r)=U-\underline{R_r^I}(A_r) \subset O_r$. Hence A_r is R_r -g-open.

Theorem 3.10 Let U be an ideal r-NS and $A_r \subset U$.

- (1) A_r is R_I -g-closed,
- (2) $\overline{R_r^I}(A_r) \subset O_r$ such that $A_r \subset O_r$ and O_r is I_r -open,
- (3) $\overline{R_r^I}(A_r) \cap F_r = \emptyset$ whenever $A_r \cap F_r = \emptyset$ and F_r is I_r -closed.

The statements (1), (2) and (3) are equivalent.

Proof. (1) \Leftrightarrow (2) Directly we get by the definition 3.1.

(2) \Rightarrow (3) Let $A_r \cap F_r = \emptyset$ and F_r be I_r -closed. Then $A_r \subset U - F_r$ and $U - F_r$ is I_r -open. By (2), $\overline{R_r^I}(A_r) \subset U - F_r$. Hence $\overline{R_r^I}(A_r) \cap F_r = \emptyset$.

(3)⇒(1) Let $A_r \subset O_r$ where O_r is I_r -open. Then $A_r \cap (U-O_r) = \emptyset$ and $U-O_r$ is I_r -closed. By (3), $\overline{R_r^I}(A_r) \cap (U-O_r) = \emptyset$ which implies that $\overline{R_r^I}(A_r) \subset O_r$. Hence A_r is R_I -g-closed.

4. Application

In the example 3.2, the members of I_r -open sets are {Food}, {Sleep}, {Food, Sleep}, {Exercise, Sleep}, {Food, Exercise, Sleep}, {Health, Exercise, Sleep}, Ø, U and the members of I_r -closed sets are {Food}, {Health}, {Food, Health}, {Health, Exercise}, {Food, Health, Exercise}, {Health, Exercise}, Ø, U.

The members of R_I-g-open sets are {Food}, {Exercise}, {Sleep}, {Food, Exercise}, {Food, Sleep}, {Exercise, Sleep}, {Food, Exercise, Sleep}, \emptyset , U and the members of I_r-closed sets are {Food}, {Health}, {Food, Health}, {Health, Exercise}, {Food, Health, Exercise}, {Health, Exercise}, \emptyset , U.

Therefore the members in difference of I_r -open sets and R_I -g-open sets are {Exercise} and {Food, Exercise} and hence the common activity is Exercise and hence Exercise is base for all human activities.

5. Conclusion

Further study about r-neighbourhood space, may give many solutions for the real life problems.

References

- M. E. Abd El-Monsef, A. S. Salama and O.A. Embaby, Granular computing using mixed neighborhood systems, Jour. of Inst. of Mathematics & Computer Science (Computer Science Ser.), 20(2009), 233–243.
- [2] M. Hosny, Idealization of j-Approximation spaces, Faculty of sciences and mathematics, 34(2)(2020), 287-301.
- [3] D. Jankovic, T. R. Hamlet, New topologies from old via ideals, Amer.Math.Monthly 97 (1990) 295 310.
- [4] A. M. Kozae, On topology expansions by ideals and applications, Chaos, Soli-tons and Fractals, 13(2002), 55-60.
- [5] N. Levine, Generalized closed sets in topology, Rend. Circ. Mat. Palermo (2)(19)(1970), 89-96.
- [6] T. Y. Lin, Granular computing on binary relations II: Rough set representations and belief functions, in: A. Skowron, L. Polkowski (Eds.), Rough Sets In Knowledge Discovery, Physica-Verlag, (1998), 121–140.
- [7] A. S. Salama, Some topological properties of rough sets with tools for data mining, Int. J. Compu. Sci., 8(2011), 588–595.
- [8] O. A. E. Tantawy, Heba. I. Mustafa, On rough approximations via ideal, Inform. Sci., 251(2013), 114–125.
- [9] Y. Y. Yao, Rough sets, neighborhood systems and granular computing, Proceedings of the IEEE Canadian Conference on Electrical and Computer Engineering, (1999), 1553–1559.
- [10] W. Zhu, Topological approaches to covering rough sets, Inform. Sci., 177(2007), 1499–15.