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Abstract. Modern greenhouses usually have flat concrete surfaces with 
communications for subsurface and above surface heating. It is proposed to 
disinfect surfaces with infrared radiation. We solve the corresponding heat 
equation. Field tests of the temperature field in protected ground have been 
performed to verify the mathematical model validity and to determine the 
empiric coefficients. The numerical investigation of the solution when the 
quantity of the Fourier series terms changes from 100 to 200 gives the 
heating time τ = 15 …16 min. Using these theoretical and experimental 
investigations one may conclude that the sufficient heating of a surface at 
the depth up to 5 cm needs a relatively long time of 15 …16 min and the 
surface will be strongly overheated during this time. We recommend using 
infrared heating for the decontamination purposes, but only in the case of 
thin layers of the ground or of the surface. The temperature necessary for the 
surface contamination and elimination of different pathogenic 
microorganisms, fungi, rots etc. emerging in the protected ground is 
achieved at a relatively small-time interval of 30…40 c. We think that the 
infrared radiation is a powerful and advanced method of sanitation of thin 
layers and surfaces. 

1 Introduction 

Today we have powerful technologies for growing fruits and vegetables in protected ground 
using soilless and substrate methods. Modern greenhouses usually have flat concrete surfaces 
with communications for subsurface and above-surface heating. The enclosing structures 
(frames and roof) are made of double or triple glass units, which–being properly installed–
provide almost ideal microclimate and help to withstand significant wind and snow loads 
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when operating greenhouses in the temperate climate of the northern hemisphere. Soilless 
and substrate growing methods and modern greenhouse facilities require decontamination of 
surfaces (floor and walls) in order to obtain healthy seedlings and a good harvest. Therefore, 
it is proposed to disinfect surfaces with infrared (IR) radiation [1-5]. 

2 Materials and methods 

When the IR radiation interacts with the medium surface, it becomes partially reflected and 
partially penetrates into the substance being absorbed in it and transforming into heat. The 
transfer of the heat energy in a substance is determined by the heat conductivity processes. 
The heat transfer phenomenon emerges in the case of a direct contact of separate particles at 
different temperatures in a surface layer and can be explained by the elastic waves’ 
propagation. The process is possible when the temperature is different at different points of 
the substance, so that the heat transfer being the result of the heat conductivity implies the 
temperature Тchange depending on the space coordinates (x, y, z,), as well as on the time τ. 

To perform the theoretical analysis of the surface heating process, we assume the 
following: 

 the treated material (the floor or the walls) is isotropic and homogeneous, that is, its 
properties are the same in any direction and the physical coefficients have negligibly 
small dependence on the temperature; 

 the source of the heat, i.e., the surface doesn’t depend on the temperature. 
In this case the heat equation runs as follows: 

𝑎 ∆𝑇 𝑓 𝑥,𝑦, 𝑧, 𝜏                                                (1) 

where T (x,y,z,τ) stands for the desired temperature field function, which depends on the 
space coordinates and the time τ; 

Δ is the Laplace operator ∆ ; 

𝑎 𝑘 𝑐𝜌⁄ isthethermal diffusivity coefficient of the medium, m2/s; k – the heat conductivity 
coefficient, Wt/(mꞏK), с – the specific heat capacity of the substance, J/(kgꞏK); ρ – the density 
of the target substance of the surface, kg/m3; 

𝑓 ,                                                              (2) 

q – the density of the inner heat sources distribution, Wt/m3. 
In the one-dimensional case, when the IR-radiation heat salon its flow at the depth х, the 

equation (1) becomes: 

𝑎 𝑓 𝑥, 𝜏 .                                                (3) 

The non-homogeneous heat equation (3) describes an idealized mechanism of heat 
distribution and is descriptive (phenomenological). One can understand how precise this 
equation describes a real physical interaction of an IR radiation with a surface only by 
comparing solutions of the equation with the results of experiment (of field tests). 

The heat equation is a mathematical model of an entire class of heat conduction and heat 
transfer processes; however, this equation taken by itself says nothing about the process of 
heat transfer from the external to the internal plies of the surface. From the mathematical 
point of view it can be explained with the fact that the solution of a partial differential 
equation is not unique. In order to find a partial solution for a given special problem of a 
substance heating, one needs additional data. These additional conditions, necessary to 
determine a unique solution for a given heat transfer problem, are called uniqueness 
conditions.  

The uniqueness conditions include: 
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 geometrical conditions for the shape and size of the body where the process of heat 
interchange takes place; 

 conditions specifying the physical and thermophysical properties of the surface (the 
heat conductivity coefficient k, the specific heat capacity c, the densityρ), as well as 
the heat sources distribution law; 

 boundary conditions specifying the thermal interaction with the environment and 
with the inferior layers at the very boundary of the surface; 

 time conditions or initial conditions which define the temperature distribution at any 
point of the body at a given time considered as the zero time for the given problem.  

Two last conditions are called the boundary conditions for the solution to (3). 
One knows ([1]) that the solution to (3) can be written as the following sum: 

𝑇 𝑥, 𝜏 𝑈 𝑥, 𝜏 𝑉 𝑥, 𝜏 ,                                                 (4) 
Where U(x,τ) stands for the solution of the homogeneous equation 

𝑎                                                                      (5) 

with the boundary conditions for the ply of the substance having the width h: 
𝑈 𝑥, 0 𝑈 𝑥 0, 𝑈 0, 𝜏 𝑈 𝜏 0, 𝑈 ℎ, 𝜏 𝑈 𝜏 0,        (6) 

and V(x,τ) satisfies the non-homogeneous equation  

𝑎 𝑓 𝑥, 𝜏                                                            (7) 

with the zero boundary conditions 
𝑉 𝑥, 0 0, 𝑉 0, 𝜏 0, 𝑈 ℎ, 𝜏 0.                   (8) 

A powerful solution technique for the heat equation is the separation of variables method 

(Fourier method). For example, if ];0[ hx one can write the Fourier series using only sines. 
In this case, the solution to (7) runs as follows: 

𝑉 𝑥, 𝜏 ∑ 𝑒 ∙ 𝜑 𝜉 𝑑𝜉 𝑠𝑖𝑛 𝑥 ,                                 (9) 

where𝜔 ; 

𝜑 𝜏 𝑓 𝑥, 𝜏 ∙ 𝑠𝑖𝑛 𝑥 𝑑𝑥.                                              (10) 

When the heat supply is constant: f(x,τ) = F = const (K/s),  (10) gives us: 

𝜑 1 𝑐𝑜𝑠 𝑛𝜋 ,                                                       (11) 

and (9) becomes: 

𝑉 𝑥, 𝜏 ∑ 𝑠𝑖𝑛 𝑥 .                                 (12) 

The Fourier method gives us the solution to (5) with the boundary conditions (6) as: 

𝑈 𝑥, 𝜏 ∑ 𝑈 𝜏 ∙ 𝑠𝑖𝑛 𝑥 ,                                              (13) 

where 

𝑈 𝜏 𝑒 𝑈 𝑥 ∙ 𝑠𝑖𝑛 𝑥 𝑑𝑥 𝑒 𝑈 𝜉 1 ∙

 𝑈 𝜉 𝑑𝜉 .                                                                   (14) 

When the boundary conditions are isothermal, that is, when the temperature of the 
boundary points of the investigated layer of the surface is kept constant  

U1 = Т1 = const, U2 = Т2 = const, 
and the initial temperature of the layer is supposed to be the same in the entire layer of the 
depth h: 

U0 = Т0 = const, which is true under the protected ground conditions, the expression (14) 
takes the following form: 

𝑈 𝜏 1 ∙ 𝑇 𝑇 𝑇 1 𝑐𝑜𝑠 𝑛𝜋 𝑒 .                 (15) 
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Here Т1is the surface temperature, Т2is the temperature of the lower boundary of the 
substance, and Т0is the medium temperature (inside the green-house). 

Then the heat equation solution is given by: 

𝑇 𝑥, 𝜏 2∑
∙

 
                        𝑠𝑖𝑛 𝑥 .                                                         (16) 

Moreover, one can add to (16) a constant term or a term linearly depending on x; for 
example, the solution may have the form: 

𝑇 𝑥, 𝜏 𝑇 ∙ 𝑥 2∑
∙

∙ 𝑠𝑖𝑛 𝑥 .                                                                       (17) 

3 Results and discussion 

Field tests of the temperature field in protected ground have been performed to verify the 
mathematical model validity and to determine the empiric coefficients (Figures 1 and 2). 

 

Fig. 1. The temperature change depending on the depth of the concrete floor due to the IR radiation. 

The numerical investigation of (17) with the parameters obtained from experiment gives
 us the average value F = 0.02 K/c for the inner heat sources distribution density coefficient 
(it is constant for the temperature depends on time almost linearly, Figure 2) and а2 = 0.9ꞏ10-
9m2/cfor the thermal diffusivity coefficient. The result fits with the reference data ([2]). 

To make calculation, we take the following values: 
Т1 = 70º…100º С; Т2 = Т0 = 15º…18º С; F = 0.02 K/c; а2 = 0.9ꞏ10-9m2/с.         (18) 
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Fig. 2. The concrete floor temperature change over time due to the IR heating. 

Figure 3 gives the temperature change over time at the depth h = 0.14 m. 

 
Fig. 3. The concrete floor temperature change over time at the depth h = 0.14 m. 

The time necessary for the temperature at the depth of 0.14 m to achieve 70º С (with Т1 
= 100º С; Т2 = Т0 = 15º С; F = 0.02 K/c; а2 = 0.9ꞏ10-9m2/с) is equal toτ = 913.5 c = 15.2 
min.  

The numerical investigation of (17) under (18) when the quantity of the series terms 
changes from 100 to 200 gives the heating timeτ = 15 …16 min. 

4 Conclusions 

Using these theoretical and experimental investigations one may conclude that the sufficient 
heating of a concrete floor at the depth up to15 cm needs a relatively long time of 15 …16 
min and the surface will be strongly overheated during this time.  

That’s why we recommend to use the IR heating for the decontamination purposes, but 
only in the case of thin layers of the ground (substrate) or of the surface. The temperature 
necessary for the surface (concrete floor, walls) contamination and elimination of different 
pathogenic microorganisms, fungi, rots etc. emerging in the protected ground is achieved at 
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a relatively small-time interval of 30…40 c. That’s why we think that the IR radiation is a 
powerful and advanced method of sanitation of thin layers and surfaces. 

References 

1. I. G. Pospelova, I. V. Vozmishchev, A. M. Niyazov, Electro technologies and electrical 
equipment in the agricultural business B 67, 45-9 (2020) 

2. I. G. Pospelova, I. V. Vozmishchev, I. R. Vladykin, Electro technologies and electrical 
equipment in the agricultural business B 68, 3-8 (2021) 

3. I. G Pospelova, I. V. Vozmishchev, I. R. Vladykin, Electro technologies and electrical 
equipment in the agricultural business B 68, 143-147 (2021) 

4. I. G. Pospelova, I. V. Vozmishchev, A. M. Niyazov et al., Electro technologies and 
electrical equipment in the agricultural business B 69, 79-83 (2022) 

5. T. A. Shirobokova, I. G. Pospelova, M. A. Nabatchikova and I. I. Iksanov, Electro 
technologies and electrical equipment in the agricultural business B 67, 95-102 (2020) 

6. T. Kh. Kabaloyev, K. K. Gatuyeva, T. M. Gokoyev, L. C. Nikkolova, Izvestiya 
Gorskogo gosudarstvennogo agrarnogo universiteta B 55, 148-152 (2018) 

7. I. F. Chuprov, E. A. Kaneva, A. A.  Mordvinov, Equations of the mathematical physics 
or the partial differential equations with applications for the oil-extraction and pipe-line 
gas transport problems (UGTU, Ukhta, 2004)  

8. A. F. Ioffe, I. B. Ruvuta, Agrophysics foundations (State Physical and Mathematical 
Literature Publishing House, Mosсow, 1959)  

E3S Web of Conferences 390, 01003 (2023) https://doi.org/10.1051/e3sconf/202339001003
AGRITECH-VIII 2023

6


