
 

Modeling of water pollution in the basins of 
Arctic rivers 

Aleksandra Bulavina* 

Murmansk Marine Biological Institute RAS, Murmansk, 183010, Russia 

Abstract. The goal hereof is mainly to model water pollution in the Arctic 
rivers on the basis of known natural and anthropogenic data on the drainage 
basins. The quality of water in rivers depends on the amount of pollutants 
entering the drainage basin and on the latter’s ability to convert such 
substances. This paper investigates merging these two components into a 
single integral model by finding a balanced system of inputs. After 
reviewing the literature and theorizing on the concept, the model was tested 
on the river systems of the European part of the Russian Arctic. The 
experiments proved the integral river pollution model to be objective. The 
resulting integral indices show the extent of anthropogenic impacts on river 
waters. The use of integral indices in conjunction with hydrochemical ones 
gives insight into how far anthropogenic sources of chemicals affect the 
composition of river waters.  

1 Introduction 

The development of the Arctic resources is crucial to Russia’s economy. The Arctic 
ecosystems are sensitive to anthropogenic impacts as their biogeochemical processes are 
slow. Russia adheres to the concept of sustainable development, and environmental 
protection of the Arctic is a national priority (Decree of the Russian President No. 440 dated 
April 1, 1996).  

European North is one of the most developed regions of the Russian Arctic. Russia’s areas 
in the region belong to the drainage basins of Barents and White Seas. Rivers of the European 
North are important for the economy and sustain extensive anthropogenic impact. River 
waters are a key source of freshwater for household and industrial use. Besides, the condition 
of land and coastal marine ecosystems largely depends on the quality of river waters.  

Hydrochemical readings from observation stations are the key source of river water 
quality data. Hydrochemical indices of water pollution are an effective tool for assessing the 
status of rivers. However, some locations simply do not have enough observation stations. 
For instance, they are often absent in sparsely populated or hard-to-reach areas. Besides, 
sampling rates are not always sufficient for proper estimates.  

This is why river water quality assessments based on indirect anthropogenic impact 
metrics are a relevant solution. They are based on modeling the functioning of river systems. 
Modeling is the primary source of water quality data where hydrochemical readings are not 
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available. Models of any natural systems have one important advantage: they can be reused 
as scenarios should inputs change. Modeling water pollution on indirect anthropogenic 
impact data is useful for quick water quality assessment and projection should the 
environment or the nature of water use change. 

The goal hereof was to model the pollution of water in the river basins of the European 
part of the Russian Arctic. 

Here are the requirements to such model: 
1. The model should be simple yet sufficient to take into account the factors that 

determine the quality of river waters. 
2. There should be enough data to make inputs. 
3. The mathematical part of the model should include certainty testing. 

2 Material and methods 

2.1 Division of the area into basins 

A drainage basin is a spatial unit that substances and energy move inside. This is why basin 
division is convenient for modeling river water pollution. Figure 1 shows the drainage basins 
analyzed herein. 

 

Fig. 1. Numbers denote catchments: 1 for Ponoy; 2 for Varzuga; 3 for Umba; 4 for Niva; 5 for 
Kovda; 6 for Keret; 7 for Kem; 8 for Vyg; 9 for Onega; 10 for Northern Dvina; 11 for Kuloy; 12 for 
Mezen; 13 for Pechora; 14 for Voronya; 15 for Teriberka; 16 for Kola; 17 for Tuloma; 18 for 
Pechenga; 19 for Paatsjoki. 
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2.2 Aggregated water pollution assessment: the algorithm 

2.2.1 General description of the randomized aggregated indices method (RAIM) 

The quality of river waters depends on many parameters of drainage basins and their internal 
processes. Further discussion will cover the most important parameters. Apparently, they are 
going to be diverse regardless of which parameters are actually picked. In order to combine 
several drainage basin properties that affect water pollution, and to make an aggregated 
quality assessment, the authors hereof chose the so-called aggregated indices method (AIM), 
first proposed by the Russian naval applied mathematician Aleksey Krylov and further 
presented in the papers of N.V. Hovanov [1; 2].  

AIM essentially combines multiple assessments of a single object to make a single 
aggregated assessment by applying the synthesis function of choice. The following function 
was used in this study0:  

𝑄 ൌ  𝑤ଵ𝑞ଵ ൅  𝑤ଶ𝑞ଶ ൅ ⋯൅ 𝑤௠𝑞௠                                      (1) 
where 𝑄 is the aggregated index; 𝑞ଵ,𝑞ଶ, … , 𝑞௠ are the normalized initial values of indices 
(inputs) 𝑥ଵ, 𝑥ଶ, … , 𝑥௠; 𝑤ଵ,𝑤ଶ, … ,𝑤௠ are the weights of the initial indices. The weights satisfy 
the following constraints: 

൜
𝑤ଵ ൅ 𝑤ଶ ൅⋯൅𝑤௠ ൌ 1,

𝑤ଵ ൒ 0 …𝑤௠ ൒ 0.  

Inputs need to be dimensionless so that the aggregated index 𝑄 be independent from their 
units. The inputs are therefore subject to equalization by the normalization formulas of 
choice. The following formulas were used in this study: 

𝑞௠ ൌ  ൝
ଵ,при ௫೘வ௠௔௫ሺ௫೘ሻ

௫೘ି௠௜௡ሺ௫೘ሻ
௠௔௫ሺ௫೘ሻି௠௜௡ሺ௫೘ሻ
଴,при ௫೘ழ ௠௜௡ሺ௫೘ሻ

 , at 𝑚𝑖𝑛ሺ𝑥௠ሻ  ൑  𝑥௠  ൑  𝑚𝑎𝑥ሺ𝑥௠ሻ    (2) 

𝑞௠ ൌ  ൝
଴,при ௫೘வ௠௔௫ሺ௫೘ሻ

௠௔௫ሺ௫೘ሻି ௫೘
௠௔௫ሺ௫೘ሻି௠௜௡ሺ௫೘ሻ
ଵ,при ௫೘ழ ௠௜௡ሺ௫೘ሻ 

, at 𝑚𝑖𝑛ሺ𝑥௠ሻ  ൑  𝑥௠  ൑  𝑚𝑎𝑥ሺ𝑥௠ሻ   (3) 

where 𝑚𝑖𝑛ሺ𝑥௠ሻ and 𝑚𝑎𝑥ሺ𝑥௠ሻ are the minimum and maximum of a property in the tested 
sample.  

If an increase in the input 𝑞௠ implies an increase in summary index  𝑄, use the Eq. (2). 
In case such an increase in 𝑞௠ implies a decrease in summary index  𝑄, use Eq. (3). These 
transforms bring the values of criteria within [0, 1]. Pareto set won’t be changed by such 
transform, which is why it can be followed by linear convolution by the Eq. (1) [3]. 

The key challenge of applying aggregated indices is that precise weights are unknown. 
Information on weights is non-exact, non-numerical, and non-complete (NNN-information); 
it is essentially a system of inequalities that relate and constrain the weights. The required 
inequalities may hold true for multiple sets of weights. The choice of a particular set will 
affect the final result. For details on selecting the weight vector on the basis of NNN-
information, see Hovanov et al. [1]. In order to adjust for the uncertainty of weights, they are 
randomized, i.e., certain weight vector w = ሺ𝑤ଵ,𝑤ଶ, … ,𝑤௠ሻ is replaced with the random 
vector 𝑤෥ ൌ ሺ𝑤෥ଵ,𝑤෥ଶ, … ,𝑤෥௠ሻ. Therefore, the certain aggregated index also becomes 
randomized, and the convolution formula is written as  

𝑄෨ ൌ  𝑤෥ଵ𝑞ଵ ൅  𝑤෥ଶ𝑞ଶ ൅ ⋯൅ 𝑤෥௠𝑞௠                              (4) 

where 𝑄෨  is the randomized aggregate index; 𝑞ଵ,𝑞ଶ, … , 𝑞௠ are the inputs; 𝑤෥ଵ,𝑤෥ଶ, … ,𝑤෥௠ are 
random weights. 
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In order to simplify the calculations, count the weight vector coordinates discretely with 
at a step of 1/n. Thus, instead of a continuous set, further analysis deals with a finite set of N 
elements:  

𝑁ሺ𝑚,𝑛ሻ ൌ
ሺ௡ା௠ିଵሻ!

ሺ௠ିଵሻ!௡!
                                     (5) 

2.2.2 Configuring the model 

The quality of river waters depends not only on the anthropogenic impact on the drainage 
basin, but also on the natural properties of the latter. To assess water pollution without 
hydrochemical readings, all the indirect anthropogenic impact metrics need to be adjusted for 
the multitude of natural properties of drainage basins. Such properties may facilitate either 
removal or accumulation of pollutants.  

Thus, the quality of river waters depends on two components: self-cleaning potential (SP) 
and pollution potential (PP) of the drainage basin. Self-cleaning potential is the ability of a 
catchment to assimilate pollutants. Pollution potential is the rate at which chemicals are added 
to river waters. The ratio of these two values determines the relative water quality index 
(RWQI).  

SP and PP are both affected by various natural and anthropogenic factors of catchment. 
PP factors are processes and conditions that contribute to greater inflow of suspended and 
dissolved substances to rivers. SP factors are processes and conditions that decrease such 
inflow or affect the rate of pollutant conversion. Which properties are exactly to be used in 
calculation depends on the physical and geographical features of the area, or on the 
availability of data. SP and PP calculations should use different parameters that neither 
directly affect each other nor are in a causative relationship.  

The assumption is that SP is determined by the lake surface area as % of drainage area, 
% (L), forest cover as % of drainage area (W), and slope (F). A catchment rich in lakes and 
vegetation is capable of better retention and conversion of substances. Slope affects the 
current speeds and limits the time of the basin’s exposure to self-cleaning factors. PP depends 
on the wastewater-to-runoff ratio (V), the catchment population density (P), and the sediment 
runoff (S). Wastewater volume and sediment runoff affect the concentration of various 
substances in water. Wastewater does not include storm water flowing from settlements. 
Population density is an implicit indicator of local development; it therefore indirectly 
measures the inflow of pollutants with storm water. 

Inputs for pollution assessment in this study was collected from various sources. All the 
sources are publicly available, and it was a deliberate decision to use such. L, W, F, and 
annual average S were calculated from map and reference book data [4-6]. Catchment 
population density was calculated from the 2010 Census data [7]. In order to calculate the 
volume of discharged wastewater in the catchments, we used official data on water use [8] 
as well as the official water reports of major industrial facilities published under the 
Environmental Disclosure Standards (Federal Law No. 7-FZ On Environmental Protection). 
Table 1 presents the inputs for the river basins. 

Table 1. Input data matrix. 

River basin 1 2 3 4 5 6 

Varzuga 3.00 30.00 0.80 14760.00 0.50 15.82 

Voronya 4.00 30.00 0.99 18620.00 0.20 2764.23 

Kem 9.30 50.00 0.53 55400.00 3.00 3049.89 

Keret 11.20 50.00 1.10 7320.00 1.50 106.38 
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Kovda 14.00 50.00 0.50 52200.00 1.50 34.52 

Kola 6.00 30.00 1.67 7315.00 4.00 3478.26 

Kuloy 2.00 87.00 0.39 201210.00 0.50 7.54 

Mezen 0.60 70.00 0.38 858000.00 0.50 4.29 

Niva 12.00 50.00 3.77 25600.00 3.00 212.77 

Nizhny Vyg 14.00 50.00 0.87 54200.00 3.00 3869.41 

Onega 3.00 65.00 0.28 91040.00 3.00 562.14 

Paatsjoki 7.00 60.00 0.81 34817.50 2.00 837.50 

Pechenga 6.50 60.00 1.48 3458.00 0.50 2202.86 

Pechora 1.20 35.00 0.35 8050000.00 0.50 38.78 

Ponoy 2.10 30.00 0.69 21700.00 0.50 18.80 

Northern Dvina 0.40 70.00 0.07 4284000.00 3.50 4539.99 

Teriberka 7.20 30.00 2.09 4237.00 0.20 47.12 

Tuloma 9.00 60.00 0.75 43320.00 4.00 667.59 

Umba 13.10 30.00 1.20 2500.00 1.00 80.97 

1 for L, %; 2 for W, %; 3 for F, m/km; 4 for S, ton/year; 5 for P, ppl/km2; 6 for V, thous. m3/km3 

2.2.3  Randomized aggregated indices for modeling water pollution in river basins 

RWQI search used two-level convolution. Level 1: finding the aggregated indices SP and PP. 
Level 2: using SP and PP as inputs for RWQI search. 

Each of the drainage basin properties in table 1 has a specific yet hard-to-determine 
significance with respect to water quality. Additional NNN-information was introduced to 
find the weights of the inputs. Each weight was assumed to be no less than 0.1, as using lower 
values would make no sense. Weights were also given non-numerical characteristics, see 
Table 2. 

Table 2. Weight constraints. 

SP PP RWQI 
𝑤௅ ൐ 𝑤ௐ 𝑤௏ ൐  𝑤௉ 𝑤ௌ௉ ൌ 𝑤௉௉ 

 
𝑤ி ൐  𝑤௅ 𝑤௉ ൐ 𝑤ௌ 𝑤ௌ௉ ൅ 𝑤௉௉ ൌ 1 

 
𝑤௅ ൒ 0.1; 𝑤ௐ ൒ 0.1; 

𝑤ி ൒ 0.1 

 
𝑤௏ ൒ 0.1; 𝑤௉ ൒ 0.1; 

𝑤ௌ ൒ 0.1 

 

 
𝑤௅ ൅  𝑤ௐ ൅  𝑤ி ൌ 1 

 
𝑤௏ ൅  𝑤௉ ൅  𝑤ௌ ൌ 1 

 

 
Substances that end up in water due to human activity are diverse, often toxic, and 

sometimes have no natural counterpart. Apparently, manmade chemicals should have a 
greater weight than naturally occurring chemicals. The inflow of pollutants to the drainage 
basin and the self-cleaning capacity of the latter to self-clean is equally important for the 
quality of river waters. Thus, SP and PP are equally weighted. 

Eq. (4) for calculating SP, PP, and RWQI is therefore written as follows: 
𝑆𝑃෪ ൌ  𝑤෥௅ ൈ 𝐿 ൅ 𝑤෥ௐ ൈ𝑊 ൅  𝑤෥ி  ൈ 𝐹 
𝑃𝑃෪ ൌ  𝑤෥௏ ൈ 𝑉 ൅ 𝑤෥௉ ൈ 𝑃 ൅  𝑤෥ௌ  ൈ 𝑆 

E3S Web of Conferences 390, 04009 (2023) https://doi.org/10.1051/e3sconf/202339004009
AGRITECH-VIII 2023

5



𝑅𝑊𝑄𝐼෫ ൌ 𝑤ௌ௉ ൈ 𝑆𝑃෪ െ𝑤௉௉ ൈ 𝑃𝑃෪  
Constraints in Table 2 only apply to a limited number of weight vectors. The weights 𝑤௉ௌ  

and 𝑤௉௉ are not random, as for the given conditions, only one set of weights, w = (0.5, 0.5), 
is acceptable for calculating 𝑅𝑊𝑄𝐼෫ . However, the aggregated index 𝑅𝑊𝑄𝐼෫  is still a random 
variable, as it calculation involves the random variables 𝑆𝑃෪  and 𝑃𝑃෪ .  

Final water pollution assessment algorithm is shown in Figure 2. 

 
Fig. 2. Randomized final assessment of potential water pollution: the algorithm. 

3 Results and discussion 

The inputs were normalized by the Eq. (2) and Eq. (3). Coordinates of the weight vector were 
counted discretely with a step of 0.01. Calculating each of the aggregated indices SP and PP 
involved 5151 weight vectors, 408 met the requirements of the study. Mathematical 
expectations of random weights can be used as numerical estimates, whereas variance 
characterizes the accuracy of such estimates. Table 3 shows mathematical expectations of 
random weights and their variance. 

Table 3. Values of weights. 

Group SP PP RWQI 
Index L W F V P S SP PP 

Weight 𝑤෥௅ 𝑤෥ௐ 𝑤෥ி 𝑤෥௏ 𝑤෥௉ 𝑤෥ௌ 𝑤௉ௌ  𝑤௉௉ 
E𝑤෥௜ 0.295 0.173 0.532 0.532 0.295 0.173 0.500 0.500 
𝜎ଶ𝑤෥௜ 0.005 0.003 0.009 0.009 0.005 0.003 - - 

Number of valid 
vectors 

408 408 1 

 
Randomized aggregated indices can also be characterized by the mathematical 

expectation E and variance σ2, see Table 4. 

Table 4. Characteristics of randomized aggregated indices 𝑆𝑃෪ , 𝑃𝑃෪ , 𝑅𝑊𝑄𝐼෫ . 

River E𝑺𝑷෪  𝝈𝟐𝑺𝑷෪  E𝑷𝑷෪  𝝈𝟐𝑷𝑷෪  E𝑹𝑾𝑸𝑰෫  𝝈𝟐𝑹𝑾𝑸𝑰෫  

Varzuga 0.483 0.005 0.032 0.000 0.225 0.001 

Voronya 0.477 0.003 0.334 0.003 0.072 0.000 

Kem 0.719 0.001 0.586 0.001 0.067 0.000 
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Keret 0.679 0.000 0.124 0.001 0.277 0.000 

Kovda 0.826 0.001 0.116 0.001 0.355 0.000 

Kola 0.423 0.001 0.713 0.002 -0.145 0.000 

Kuloy 0.693 0.003 0.096 0.001 0.299 0.001 

Mezen 0.613 0.005 0.098 0.001 0.257 0.002 

Niva 0.313 0.005 0.253 0.002 0.030 0.000 

Nizhny Vyg 0.773 0.001 0.682 0.002 0.046 0.000 

Onega 0.664 0.004 0.291 0.002 0.186 0.003 

Paatsjoki 0.660 0.001 0.248 0.000 0.206 0.001 

Pechenga 0.553 0.000 0.291 0.002 0.131 0.000 

Pechora 0.524 0.007 0.201 0.003 0.161 0.004 

Ponoy 0.479 0.006 0.032 0.000 0.223 0.001 

Northern Dvina 0.653 0.006 0.869 0.001 -0.108 0.001 

Teriberka 0.389 0.001 0.016 0.000 0.187 0.000 

Tuloma 0.712 0.001 0.384 0.004 0.164 0.002 

Umba 0.645 0.002 0.071 0.000 0.287 0.000 

 
Figure 3 shows a chart of RWQI estimates. Rivers are sorted by the RWQI value in 

descending order, i.e. the water quality worsens left-to-right.  
Centers of segments correspond to the mathematical expectation of the random variable 

RWQI, ends show standard deviation. If the ends of segments for two rivers do not intersect, 
the quality of water in one of them is significantly (for any valid weight vector) higher than 
in the other one. Otherwise, the probability of dominance must be calculated to identify 
preference. Dominance probabilities were calculated for all the intersections. This effectively 
split rivers into four classes of quality: 

1. Kovda, Kuloy, Umba, Mezen, Keret, Varzuga, Ponoy 
2. Paatsjoki, Pechora, Teriberka, Onega, Tuloma, Pechenga 
3. Voronya, Kem, Nizhny Vyg, Niva 
4. Northern Dvina, Kola 

 
Fig. 3. Relative Water Quality Index estimates for the rivers in the European part of the Russian 
Arctic. 
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Higher class means a significantly higher quality of water. Let us designate the classes as 

follows: Class I for clean; Class II for mildly polluted; Class III for moderately polluted; 
Class IV for severely polluted. 

The results of modeling can only be tested by comparing them against empirical data 
collected in field. The standard hydrochemical index used in Russia as a water quality indices 
is referred to as Specific Combined Water Pollution Index (SCWPI). Let us compare the 
quality assessments obtained herein against SCWPI values. For such a comparison, RWQI 
and SCWPI need to be clarified.  

SCWPI value depends on how frequently the maximum permissible concentrations 
(MPC) of 15 chemicals on the list [9] are exceeded, and on the actual value to MPC ratio. If 
necessary, calculations of these metrics can involve substances specific to the body of water 
under analysis.  

SCWPI calculations do not take into account the natural chemical of waters. 
Concentrations above MPC thresholds may occur in natural waters even without 
anthropogenic impact. Such waters are considered contaminated. However, if the drainage 
basin is highly resistant to pollution, the situation can be opposite. If the catchment is exposed 
to strong anthropogenic impact but can partially mitigate it so that the chemicals remain 
within their MPCs, river waters are considered clean. 

Each particular study’s theoretical background should be consulted to decide whether 
river waters should be considered contaminated where some chemicals exceed their 
respective MPCs for natural reasons. The theory behind assessing the status of natural 
systems is highlighted in V.V. Denisov’s work [10]. The author defines the concept of normal 
natural status and the environmental quality norms as follows: 

 Normal natural status is such condition of a natural system that is most likely to 
occur without anthropogenic impact due to its natural physical, chemical, and 
biological processes. 

 Environmental quality norms are such values of physical, chemical, biological, or 
other indicators that are scientifically shown to enable sustainable functioning of 
natural ecological systems, natural and/or anthropogenic objects. 

SCWPI shows how far the quality of water deviates from the quality norms regardless of 
why it happens. Background concentrations of chemicals in natural waters affect SCWPI; 
sometimes, these concentrations are decisive. RWQI shows how far the quality of river 
waters deviates from the normal natural status, i.e., the extent of anthropogenic impact. 

This is why RWQI cannot be directly compared to SCWPI: they are different metrics. 
Comparison should involve data on the anthropogenic impact on catchments as well as MPC 
data for various substances.  

Area under study is spread across three major geological structures: the Fennoscandian 
Shield, the Russian Plate, and the Timan-Pechora Plate. The Shield contains the drainage 
basins of Varzuga, Voronya, Kem, Keret, Kovda, Kola, Niva, Nizhny Vyg, Paatsjoki, 
Pechenga, Ponoy, Teriberka, Tuloma, Umba. The catchments of Kuloy, Mezen, Onega, 
Pechora, and Northern Dvina are confined to the plates.  

Background concentrations of up to 5-6x MPC for copper, up to 10x MPC for iron, and 
up to 2x MPC for manganese are characteristic of the rivers whose drainage basins are in the 
Fennoscandian Shield. Above-MPC concentrations of copper, iron, and manganese are also 
typical of rivers with basins within the plates. However, the ratios there are an order of 
magnitude higher for manganese; besides, they have above-MPC concentrations of the ion 
SO4

2- [11] due to the presence of soluble rock.  
Let us compare the SCWPI estimates against anthropogenic impact assessment, see Table 

5.  
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Table 5. Quality of water in the European rivers of the Russian Arctic and anthropogenic impact on 
their drainage basins. 

Catchment SCWPI 
quality 
class  

RWQI 
quality 
class 

Substances above MPC  Anthropogenic 
impact  

Varzuga III I Cu, Fetotal low 

Voronya III III Fetotal, Mn, Cu, Zn, 
fluorides 

moderate 

Kem III III Organic substances 
(COD), Cu, Fetotal 

moderate 

Keret II I Cu, Fetotal low 

Kovda II I Cu, Fetotal moderate 

Kola III IV Cu, Fetotal, Mn, organic 
substances (COD), 

phenols, NH4+, Al, Zn, 
Hg 

high 

Kuloy IV I Mn, Cu, Fetotal, SO4
2- low 

Mezen IV I Mn, Cu, Fetotal low 

Niva II III Cu, Zn, Mn, Ni, Mo, 
petroleum products 

high 

Nizhny Vyg III III Cu, Fetotal, Organic 
substances (COD), 

petroleum products, NH4
+ 

moderate 

Onega IV II Mn, Cu, Fetotal, Al, Zn, 
petroleum products 

moderate 

Paatsjoki II II Cu, Zn, Fetotal low 

Pechenga III II Ni, Cu, Fetotal, Mn moderate 

Pechora IV II Cu, Fetotal, Zn, Al, Mn, 
petroleum products 

low 

Ponoy III I Cu, Fetotal low 

Northern Dvina IV IV Fetotal, Cu, Mn, Al, Zn, 
organic substances (COD) 

high 

Teriberka III II Cu, Fetotal, Mn, Zn low 

Tuloma III II Cu, Fetotal, Mn moderate 

Umba III I Cu, Fetotal low 

 
In most cases, RWQI showed an equal or higher quality of water than SCWPI due to the 

natural chemical of waters. However, the assessments were opposite of each other in some 
cases. Kuloy and Mezen are severely polluted per SCWPI. Yet, these rivers are barely 
affected by human activity. In particular, Mezen is one of Europe’s most intact rivers [12]. 
In its natural state, the water of Kuloy may contain up to 100x MPC of manganese in annual 
average figures (240x MPC for Mezen) [11]. This inflates their SCWPI. RWQI, however, 
shows no deviation from the normal natural status and classifies these rivers as ‘clean’. 

Class I per RWQI (clean rivers) includes rivers that are exposed to virtually no 
anthropogenic impact; they only have above-MPC concentrations for substances typical of 
the natural waters in the region.  

Class II (mildly polluted) includes rivers exposed to low or mild anthropogenic impact. 
They exceed MPCs for all the substances typical of the regions as well as for 1 to 3 substances 
that are not typical of the local natural waters.  
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Classes III and IV (moderate and severely polluted) include rivers whose drainage basins 
are exposed to moderate or high anthropogenic impact. They exceed MPCs for multiple 
substances including hazardous toxins. 

 RWQI metrics correlate well with the extent of anthropogenic transformation of river 
waters. RWQI shows the extent of anthropogenic pollution. However, it is not indicative of 
the quantity of impurities in water nor of its safety. Those should be analyzed by SCWPI or 
other hydrochemical indices. 

Non-numerical data on the presence or absence of nearby sources of anthropogenic 
impact is often cited in addition to hydrochemical pollution indices to clarify the causes of 
low water quality. Such data is not sufficient to compare rivers in terms of how human 
activity affects their water quality. 

V.A. Bryzgalo and I.M. Ivanova [13] calculated the extent and the proportion of 
anthropogenic pollution of river waters. Their estimates could be used to compare the 
anthropogenic pollution of river waters in space and time. Notably, they used MPC standards 
and ignored normal natural status. Thus, their method cannot fully separate the anthropogenic 
effects on river water chemistry from the natural causes.  

RWQI has several advantages as a metric of anthropogenic water pollution: Namely, it: 
1. uses normal natural status and thus shows only the anthropogenic effects 
2. needs no hard-to-find data 
3. allows for mathematical testing of certainty 
4. can be used to make scenarios in order to project the effects of change in natural 

conditions or anthropogenic impact. 

4 Conclusions 

This paper presents a novel integral model of water pollution in river basins. The model has 
been tested on the rivers of the European part of the Russian Arctic and performed well. The 
chemistry of river waters depends on the natural and anthropogenic factors of drainage 
basins. The model takes that into account. RWQI assessments are consistent with the actual 
anthropogenic impact on drainage basins; they are sensitive to deviation from the normal 
natural status.  

 RWQI allows assessing the extent of anthropogenic transformation of river waters. Its 
potential applications are: 

1. an independent model indicative of anthropogenic pollution of river waters. 
2. A model to complement hydrochemical pollution indices, which could help clarify 

the contribution of anthropogenic impact to the chemistry of river waters as part of 
ecological studies of rivers or planning the development of drainage basin areas. 

 
This research was funded by the Ministry of Science and Higher Education of the Russian Federation, 
grant No. FMEE-2021-0029 
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