

ASIC Implementation of Bit Matrix Multiplier

K. Swetha Reddy1, Surabhi Seethai1, Akanksha1,Meenakshi1, V. Sagar Reddy1
1 Department of ECE, VNR Vignana Jyothi Institute of Engineering and Technology, Telangana,
India

Abstract: In computer science and digital electronics, a bit matrix
multiplier (BMM) is a mathematical operation that is used to quickly
multiply binary matrices. BMM is a basic component of many computer
algorithms and is utilized in fields including machine learning, image
processing, and cryptography. BMM creates a new matrix that represents
the product of the two input matrices by performing logical AND and XOR
operations on each matrix element's binary value. BMM is a crucial method
for large-scale matrix operations since it has a lower computational
complexity than conventional matrix multiplication. Reduced computational
complexity: When compared to conventional matrix multiplication
algorithms, BMM has a lower computational complexity since it performs
matrix multiplication using bitwise operations like logical AND and XOR.
Faster processing speeds are the result, particularly for complex matrix
computations. Less memory is needed to store the binary values of the
matrices in BMM because these values can be expressed using Boolean
logic. As a result, less memory is needed, and the resources can be used more
effectively.

1 INTRODUCTION
 In order to expedite the management of mixed media, BMM advice can also serve as both
sound and visual directions. BMM. N is currently only commercially available on
supercomputers as a costly piece of equipment, so smaller, less expensive cycle grid duplicate
functionality can be added to software microchips or application-explicit processors. BMM
provides digit controls, media sub word activities, and consolidated bit tasks without regard to
lattice enhancement and framework rendering (BMMT). Matrix hindering[3] is used to
investigate ideal sub-framework sizes for BMM crude guidelines that can all execution of a
few enhanced apps and cost trade-offs in the BMM plan.
 The BMM, n digit grid duplicate activity has two n x n[2] frameworks, An and B, that
are increased. An elective plan, (BMMT.n), which translates the B lattice, has parts from left
to right that are numbered ascending up and through in a grid, starting at 1. Although the
translation is assured because B serves as the guidance input, it is exceedingly challenging to
execute BMM when using B as the enhancement vector. Each column of A and the entire B
lattice are prerequisites for each line of the outcome framework C. [11]

Corresponding Author: swethareddy_k@vnrvjiet.in *Corresponding Author: swethareddy_k@vnrvjiet.in

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons
Attribution License 4.0 (https://creativecommons.org/licenses/by/4.0/).

E3S Web of Conferences 391, 01028 (2023) https://doi.org/10.1051/e3sconf/202339101028
ICMED-ICMPC 2023

Supercomputers have a special 64 x 64 BMM register that is used to store the B lattice. The
entire B lattice, including the items in this register, is read in a single cycle.

 To transmit the contents of a vector register to the BMM register, it signifies an
additional instruction. sub-lattice decay the columns of C back to a standard vector register x
after streaming the lines of A from an usual vector register, duplicating each column by the
whole B lattice in a single cycle. The A network is held by the two universally useful register
operands, and the result C is assembled back into a broadly useful register. In essence, a
product or installed processor may not be interested in a large unit like BMM.64[1]. A
common method for increasing store use in grid duplication is lattice impeding. It uses the gap
and vanquish method, where the initial grid is divided into smaller matrices. This strategy is
utilized to perform lattice duplication effectively in memory obliged conditions. We have
utilized this strategy to track down better trade-offs, for example the decision of n, m and k,
for the plan of a BMM unit that performs (n × k) × (k × m) [14]increase the best boundaries
for the deterioration rely upon four variables. The number of terms handled in the
augmentation of the submatrix was nkm. When using the more conservative BMM guideline
as a crude activity, increasing nkm probably produces the grid duplication that happens the
fastest.

 The bit matrix multiplier's objective is to obtain the best possible accuracy and
performance, as measured by the area and throughput. The BMM, which is now only found
in supercomputers but is employed in future applications of staircase encoders, is the most
potent and significant bit level operation.[10] It uses a simpler process to generate output for
a wider range of input bit sizes. It is also used in error correction codes and gives a codeword
to the original data[4].The paper exhibits the encoding part and will encode the input data and
the error probability is calculated[5]by analysing the input codeword. Research says that the
implementation on FPGA based design have been initiated by reconfigurable hardware[13]
and realization of matrix multipliers.

 The implementation of bit matrix multiplier in the staircase encoder[6,7] is to reduce the
complexity[9] than other multipliers. The main aim of the bit matrix multiplier is to give high
through put rate and be practically possible in implementation. A thorough detailed working
specification helps assist the design process with the design less prone to the errors. The design
is implemented in Xilinx software and the output is received from the RTL schematic view
and simulation is done resulting the multiplication of the matrices. For the bit matrix
multiplier, the input data is taken as 12 and 3 parity multipliers are taken which are then taken
into modulo 2 multiplication by ANDing and XORing the bits. Similarly for a small number
of bits, it is also capable of accommodating large number of bits such as with input data of
478 bits and a ROM of 32 bits is allocated to Pb i.e., the parity generator matrix and is a
parallel implementation of the blocks[12] which is also demonstrated clearly in the paper.

2 DESIGN OF BIT MATRIX MULTIPLIER
 According to this stair case encoder we are building bit matrix multiplier which is essential
block for our stair case encoder. The parallel block staircase encoder's architecture, which
aims to provide high throughput and low latency, is shown in the previous figure. It has
registers to store the values in, as well as a bit matrix multiplier, bit matrix adder, and parity
generator matrix. The bit matrix multiplier needs input data in the initial step of the design
process. The Pb submatrix, which provides the multiplier with processing data, is one of two
submatrices that make up the parity generation matrix. The bit matrix multiplier's architectural
diagram and explanation of how it works are shown below. For example, if we design for a
12-bit input data Ak and let the number of bits from Pb be 3 bits or 3 partial parity multipliers
then through multiplication we get a final of 36 bits as the result.

2

E3S Web of Conferences 391, 01028 (2023) https://doi.org/10.1051/e3sconf/202339101028
ICMED-ICMPC 2023

Supercomputers have a special 64 x 64 BMM register that is used to store the B lattice. The
entire B lattice, including the items in this register, is read in a single cycle.

 To transmit the contents of a vector register to the BMM register, it signifies an
additional instruction. sub-lattice decay the columns of C back to a standard vector register x
after streaming the lines of A from an usual vector register, duplicating each column by the
whole B lattice in a single cycle. The A network is held by the two universally useful register
operands, and the result C is assembled back into a broadly useful register. In essence, a
product or installed processor may not be interested in a large unit like BMM.64[1]. A
common method for increasing store use in grid duplication is lattice impeding. It uses the gap
and vanquish method, where the initial grid is divided into smaller matrices. This strategy is
utilized to perform lattice duplication effectively in memory obliged conditions. We have
utilized this strategy to track down better trade-offs, for example the decision of n, m and k,
for the plan of a BMM unit that performs (n × k) × (k × m) [14]increase the best boundaries
for the deterioration rely upon four variables. The number of terms handled in the
augmentation of the submatrix was nkm. When using the more conservative BMM guideline
as a crude activity, increasing nkm probably produces the grid duplication that happens the
fastest.

 The bit matrix multiplier's objective is to obtain the best possible accuracy and
performance, as measured by the area and throughput. The BMM, which is now only found
in supercomputers but is employed in future applications of staircase encoders, is the most
potent and significant bit level operation.[10] It uses a simpler process to generate output for
a wider range of input bit sizes. It is also used in error correction codes and gives a codeword
to the original data[4].The paper exhibits the encoding part and will encode the input data and
the error probability is calculated[5]by analysing the input codeword. Research says that the
implementation on FPGA based design have been initiated by reconfigurable hardware[13]
and realization of matrix multipliers.

 The implementation of bit matrix multiplier in the staircase encoder[6,7] is to reduce the
complexity[9] than other multipliers. The main aim of the bit matrix multiplier is to give high
through put rate and be practically possible in implementation. A thorough detailed working
specification helps assist the design process with the design less prone to the errors. The design
is implemented in Xilinx software and the output is received from the RTL schematic view
and simulation is done resulting the multiplication of the matrices. For the bit matrix
multiplier, the input data is taken as 12 and 3 parity multipliers are taken which are then taken
into modulo 2 multiplication by ANDing and XORing the bits. Similarly for a small number
of bits, it is also capable of accommodating large number of bits such as with input data of
478 bits and a ROM of 32 bits is allocated to Pb i.e., the parity generator matrix and is a
parallel implementation of the blocks[12] which is also demonstrated clearly in the paper.

2 DESIGN OF BIT MATRIX MULTIPLIER
 According to this stair case encoder we are building bit matrix multiplier which is essential
block for our stair case encoder. The parallel block staircase encoder's architecture, which
aims to provide high throughput and low latency, is shown in the previous figure. It has
registers to store the values in, as well as a bit matrix multiplier, bit matrix adder, and parity
generator matrix. The bit matrix multiplier needs input data in the initial step of the design
process. The Pb submatrix, which provides the multiplier with processing data, is one of two
submatrices that make up the parity generation matrix. The bit matrix multiplier's architectural
diagram and explanation of how it works are shown below. For example, if we design for a
12-bit input data Ak and let the number of bits from Pb be 3 bits or 3 partial parity multipliers
then through multiplication we get a final of 36 bits as the result.

Fig. 1. Block diagram of 36-bit matrix multiplier.

 In the figure 1, we see a clear operation of the 12-bit input data being given and 3 parity
multipliers which have single row operation in which each block there are 4 multipliers after
which all the bits are XORed and gives a single bit as output. The multiplier has a 3 bit modulo
two multipliers, which means 4 multipliers have an operation of 4x3 which gives 12 as the
input data, and from the parity generator Pb we get 3 parity multipliers which gives 12x3=36
bits for a single row operation.

Fig. 2. Block diagram of 4-bit parallel multiplier.

 This is 4-bit parallel multiplier as demonstrated, the block diagram of a single row
operation of a single block is shown in the Fig. 2, which consists of 4-bit parallel multipliers.
For each multiplier there is a 3-bit input multiplier present which gives 3-bit data and from
each multiplier unit we get 12-bit data as 4X3=12 multiplication takes place, and the 12-bit
data multiplies with each 3-bit multipliers to give 36-bit data as the output. Similarly for 478
input bits the operation is explained below instead of 36 bits and Pb, the parity generation
matrix we take 32 parity multipliers in which for single row operations 159 multipliers are
given and 159x3=477 bits are produces and the remaining one bit (478) it is given to an AND
operation and all of the bits are XORed to give one single bit.

3

E3S Web of Conferences 391, 01028 (2023) https://doi.org/10.1051/e3sconf/202339101028
ICMED-ICMPC 2023

Fig. 3. Block diagram of 478-bit matrix multiplier.

 In Figure 4, is the logic diagram of 3-bit input multiplier which consists of AND and
XOR gates. The input to the 3 AND gates is the input Ak and Pb memory bit data. The above
diagram is an example taken from multiplier unit 2 of single row operation. The input data is
given through AND gates and are XORed to give the final 3-bit output from a single multiplier
unit and as 4 multipliers are there in parallel, the 3-bit data multiplies with the 4 multiplier
units and gives a 12-bit data(4x3=12).

Fig. 4. Block diagram of 3-bit input multiplier.

Similarly, as shown in the figure 3, for input data such as 478-bit input data in
form of Ak, where 32 parity multipliers are present and Pb which is the memory bit input
data(32x478), 159 multiplier units are there in every single row operation and 32 such

4

E3S Web of Conferences 391, 01028 (2023) https://doi.org/10.1051/e3sconf/202339101028
ICMED-ICMPC 2023

Fig. 3. Block diagram of 478-bit matrix multiplier.

 In Figure 4, is the logic diagram of 3-bit input multiplier which consists of AND and
XOR gates. The input to the 3 AND gates is the input Ak and Pb memory bit data. The above
diagram is an example taken from multiplier unit 2 of single row operation. The input data is
given through AND gates and are XORed to give the final 3-bit output from a single multiplier
unit and as 4 multipliers are there in parallel, the 3-bit data multiplies with the 4 multiplier
units and gives a 12-bit data(4x3=12).

Fig. 4. Block diagram of 3-bit input multiplier.

Similarly, as shown in the figure 3, for input data such as 478-bit input data in
form of Ak, where 32 parity multipliers are present and Pb which is the memory bit input
data(32x478), 159 multiplier units are there in every single row operation and 32 such

multipliers are placed parallelly. Each multiplier has a 3-bit multiplier, therefore for 159 such
units we get the result as 477(159x3) and for 32 such parity multipliers 32x478 we get the
output. Hence, we prove here that, as for 36 bits or as large as 478 bits the operation
performed is same and we get the accurate results. In the bit-matrix multiplier the modulo-2
augmentation is applied to Ak (I) and Pb in lined up by ANDing and XORing of pieces in
Ak (i) with columns in Pb to deliver 32 halfway equality bits Cp2, k(i). The piece grid
multiplier comprises of 32 equality multipliers that process the 32 equality pieces of Cp2, k
(I) simultaneously. Every equality multiplier registers 1 bit of Cp2, k(i). The equal
calculation likewise occurs inside the equality multiplier by utilizing 159 multiplier units.
Every multiplier unit process 3 pieces from a column of PT b and Ak (I), separately. The
quantity of information pieces of multiplier units is chosen to accomplish high parallelization
level. The pieces produced from the multiplier units are XORed with the pieces created by
ANDing the last piece of Ak (i) with the last piece of line of PT b. The last processed esteem
structures one of the pieces in Cp2, k(i).

3 RESULTS
 Through the figure 4, simulation result for a 36-bit output data it is shown that Ak is 12 bits,
Pb which is the outcome is 36 bits and y is the 3-bit parity multiplier. Through the bit matrix
multiplication of Ak and y the total outcome is observed to be 36 bits.

Fig. 5. 36-bit matrix multiplier simulation result.

Fig. 6. 478-bit matrix multiplier simulation result.

Similar to that of the 36 bits bit matrix multiplier, for generation of larger number

bits can be done by taking the input data bits as 478(Ak), with the help of 32 parity multipliers
and 159 multiplier units, where each unit gives a 32-bit output data. Through multiplication
of Ak and Pb which is 478x32 we obtain 15296 bits of data through bit matrix multiplication.
Here in figure, it is observed that the schematic view of the design of 478 bits which proves
that similarly generation of smaller or larger bits can be executed which can be used in the
real time applications such as error free coding. The synthesis results of the Bit matrix
Multiplier obtained from Synopsys tool. The figure 7 specifies the mapped gate level netlist-
based schematic for bit matrix multiplier using 90nm technology.

5

E3S Web of Conferences 391, 01028 (2023) https://doi.org/10.1051/e3sconf/202339101028
ICMED-ICMPC 2023

Fig. 7. Internal schematic view of 478-bit matrix multiplier.

Fig. 8. ASIC design layout of the 478-bit matrix multiplier.

4 CONCLUSION
The Bit Matrix Multiplier operates using combinational logic and does not receive clock input,
which results in a reduction in power consumption. We will support an equal flight of stairs
encoder strategy to achieve high throughput and low inertness. A Piece framework Multiplier,
Spot Network Viper, Equality Age Units, Equality Touch Registers, ROMs, Multiplexer,
Regulator, Information Buffer, and Data Formatter are all included in the engineering of a
flight of stairs encoder. As a result, we used the Bit-Matrix Multiplier in our project, which is
one of the key building elements in the design of staircase encoders and aids in lowering power
consumption. As the Bit-Matrix Multiplier is used, power consumption is lowered. It helped
with the design of a forward error correction (FEC) encoder with high throughput, low
dormancy, and power. The multistage pipelined design of this encoder enables excellent
effectiveness in terms of throughput and region. The area consumed by the bit matrix

6

E3S Web of Conferences 391, 01028 (2023) https://doi.org/10.1051/e3sconf/202339101028
ICMED-ICMPC 2023

Fig. 7. Internal schematic view of 478-bit matrix multiplier.

Fig. 8. ASIC design layout of the 478-bit matrix multiplier.

4 CONCLUSION
The Bit Matrix Multiplier operates using combinational logic and does not receive clock input,
which results in a reduction in power consumption. We will support an equal flight of stairs
encoder strategy to achieve high throughput and low inertness. A Piece framework Multiplier,
Spot Network Viper, Equality Age Units, Equality Touch Registers, ROMs, Multiplexer,
Regulator, Information Buffer, and Data Formatter are all included in the engineering of a
flight of stairs encoder. As a result, we used the Bit-Matrix Multiplier in our project, which is
one of the key building elements in the design of staircase encoders and aids in lowering power
consumption. As the Bit-Matrix Multiplier is used, power consumption is lowered. It helped
with the design of a forward error correction (FEC) encoder with high throughput, low
dormancy, and power. The multistage pipelined design of this encoder enables excellent
effectiveness in terms of throughput and region. The area consumed by the bit matrix

multiplier given by generating the area report is 195618.33mm2 with 82174 ports and 34
sequential cells. The power generated through the design compiler obtained is a total power
of 38.68mW with a operating voltage of 1.2V and leakage power of 620.43uW. FEC increases
the throughput of the functional framework while reducing the number of transmission errors
and the power requirements for correspondence systems. To use less electricity, the flight of
stairs encoder's control theory can be further developed.

References
[1] Dou Yong & Vassiliadis, G.N. Gaydadjiev, G.K. Kuzmanov, “64-bit floating-point
FPGA matrix multiplication”, Proceedings of the 2005 ACM/SIGDA 13th international
symposium on Field-programmable gate arrays, 86-95 (2005).
[2] Al-Ghuribi, Sumaia & Thabit Khalid, Matrix Multiplication Algorithms”, International
Journal of Computer Network and Information Security. 12, 74-79 (2012)
[3] Sandhya Rai1, Prof. Suresh. S. Gawande2, “Survey of Matrix Multiplication using IEEE
754 Floating Point for Digital Image Compression”, International Journal Of Innovative
Research in Science, Engineering and Technology, Vol 8 Issue 9 September, (2019).
[4] R. Tanner, “A recursive approach to low complexity codes,” IEEE Trans. Inf. Theory,
vol. IT-27, no. 5, pp. 533–547, Sep. (1981).
[5] M. Lentmaier, A. Sridharan, D. J. Costello, and K. S. Zigangirov, “Iterative decoding
threshold analysis for LDPC convolutional codes,” IEEE Trans. Inf. Theory, vol. 56, no. 10,
pp. 5274–5289, Oct. (2010).
[6] C. Fougstedt and P. Larsson-Edefors, “Energy-efficient high-throughput VLSI
architectures for product-like codes,” J. Lightw. Technol, vol. 37, no. 2, pp. 477–485, Jan.
15, (2019).
[7] Y. Cai, W. Wang, W. Qian, J. Xing, K. Tao, J. Yin, S. Zhang, M. Lei, E. Sun, H. Chien,
Q. Liao, K. Yang, and H. Chen, "FPGA Investigation on Error-Flare Performance of a
Concatenated Staircase and Hamming FEC Code for 400G Inter-Data Center Interconnect,"
J. Lightwave Technol. 37, 188-195 (2019).
[8] L. M. Zhang and F. R. Kschischang, “Low-complexity soft-decision concatenated LDGM-
staircase FEC for high-bit-rate fiber-optic communication,” J. Lightw. Technol., vol. 35, no.
18, pp. 3991–3999, Sep. 15, (2017).
[9] M. Barakatain and F. R. Kschischang, “Low-complexity concatenated LDPC-staircase
codes”, J. Lightw. Technol., vol. 36, no. 12, pp. 2443–2449, Jun. 15, (2018).
[10] Y. Hilewitz, C. Lauradoux and R. B. Lee, "Bit matrix multiplication in commodity
processors," 2008 International Conference on Application-Specific Systems, Architectures
and Processors, Leuven, Belgium, pp. 7-12, d, (2008).
[11] Safonov, I.; Kornilov, A.; Makienko, D. An Approach for Matrix Multiplication of 32-
Bit Fixed Point Numbers by Means of 16-Bit SIMD Instructions on DSP. Electronics, 12, 78
(2023).
[12] Qasim, Syed Manzoor & Abbasi, Shuja & AlMashary, Bandar, “A Survey of FPGA
Based Design of Matrix Multipliers: Fixed- and Floating-Point Realizations”, (2008).
[13] By Prabir Saha, Arindam banerjee, partha Bhattacharya, Anup Danapat, “Improved
matrix multiplier design for high-speed digital signal processing applications”, (2013)

7

E3S Web of Conferences 391, 01028 (2023) https://doi.org/10.1051/e3sconf/202339101028
ICMED-ICMPC 2023

