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Abstract: In computer science and digital electronics, a bit matrix 
multiplier (BMM) is a mathematical operation that is used to quickly 
multiply binary matrices. BMM is a basic component of many computer 
algorithms and is utilized in fields including machine learning, image 
processing, and cryptography. BMM creates a new matrix that represents 
the product of the two input matrices by performing logical AND and XOR 
operations on each matrix element's binary value. BMM is a crucial method 
for large-scale matrix operations since it has a lower computational 
complexity than conventional matrix multiplication. Reduced computational 
complexity: When compared to conventional matrix multiplication 
algorithms, BMM has a lower computational complexity since it performs 
matrix multiplication using bitwise operations like logical AND and XOR. 
Faster processing speeds are the result, particularly for complex matrix 
computations. Less memory is needed to store the binary values of the 
matrices in BMM because these values can be expressed using Boolean 
logic. As a result, less memory is needed, and the resources can be used more 
effectively. 

1 INTRODUCTION 
  In order to expedite the management of mixed media, BMM advice can also serve as both 
sound and visual directions. BMM. N is currently only commercially available on 
supercomputers as a costly piece of equipment, so smaller, less expensive cycle grid duplicate 
functionality can be added to software microchips or application-explicit processors. BMM 
provides digit controls, media sub word activities, and consolidated bit tasks without regard to 
lattice enhancement and framework rendering (BMMT). Matrix hindering[3] is used to 
investigate ideal sub-framework sizes for BMM crude guidelines that can all execution of a 
few enhanced apps and cost trade-offs in the BMM plan.  
  The BMM, n digit grid duplicate activity has two n x n[2] frameworks, An and B, that 
are increased. An elective plan, (BMMT.n), which translates the B lattice, has parts from left 
to right that are numbered ascending up and through in a grid, starting at 1. Although the 
translation is assured because B serves as the guidance input, it is exceedingly challenging to 
execute BMM when using B as the enhancement vector. Each column of A and the entire B 
lattice are prerequisites for each line of the outcome framework C. [11]  

 

Corresponding Author: swethareddy_k@vnrvjiet.in *Corresponding Author: swethareddy_k@vnrvjiet.in

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons 
Attribution License 4.0 (https://creativecommons.org/licenses/by/4.0/).

E3S Web of Conferences 391, 01028 (2023) https://doi.org/10.1051/e3sconf/202339101028
ICMED-ICMPC 2023



Supercomputers have a special 64 x 64 BMM register that is used to store the B lattice. The 
entire B lattice, including the items in this register, is read in a single cycle. 

  To transmit the contents of a vector register to the BMM register, it signifies an 
additional instruction. sub-lattice decay the columns of C back to a standard vector register x 
after streaming the lines of A from an usual vector register, duplicating each column by the 
whole B lattice in a single cycle. The A network is held by the two universally useful register 
operands, and the result C is assembled back into a broadly useful register. In essence, a 
product or installed processor may not be interested in a large unit like BMM.64[1]. A 
common method for increasing store use in grid duplication is lattice impeding. It uses the gap 
and vanquish method, where the initial grid is divided into smaller matrices.  This strategy is 
utilized to perform lattice duplication effectively in memory obliged conditions. We have 
utilized this strategy to track down better trade-offs, for example the decision of n, m and k, 
for the plan of a BMM unit that performs (n × k) × (k × m) [14]increase the best boundaries 
for the deterioration rely upon four variables. The number of terms handled in the 
augmentation of the submatrix was nkm. When using the more conservative BMM guideline 
as a crude activity, increasing nkm probably produces the grid duplication that happens the 
fastest.  

 The bit matrix multiplier's objective is to obtain the best possible accuracy and 
performance, as measured by the area and throughput. The BMM, which is now only found 
in supercomputers but is employed in future applications of staircase encoders, is the most 
potent and significant bit level operation.[10] It uses a simpler process to generate output for 
a wider range of input bit sizes. It is also used in error correction codes and gives a codeword 
to the original data[4].The paper exhibits the encoding part and will encode the input data and 
the error probability is calculated[5]by analysing the input codeword. Research says that the  
implementation on FPGA based design have been initiated by reconfigurable hardware[13] 
and realization of matrix multipliers.  

 The implementation of bit matrix multiplier in the staircase encoder[6,7] is to reduce the 
complexity[9] than other multipliers. The main aim of the bit matrix multiplier is to give high 
through put rate and be practically possible in implementation. A thorough detailed working 
specification helps assist the design process with the design less prone to the errors. The design 
is implemented in Xilinx software and the output is received from the RTL schematic view 
and simulation is done  resulting the multiplication of the matrices. For the bit matrix 
multiplier, the input data is taken as 12 and 3 parity multipliers are taken which are then taken 
into modulo 2 multiplication by ANDing and XORing the bits. Similarly for a small number 
of bits, it is also capable of accommodating large number of bits such as with input data of 
478 bits and a ROM of 32 bits is allocated to Pb i.e., the parity generator matrix and is a 
parallel implementation of the blocks[12] which is also demonstrated clearly in the paper.  

2 DESIGN OF BIT MATRIX MULTIPLIER 
 According to this stair case encoder we are building bit matrix multiplier which is essential 
block for our stair case encoder.  The parallel block staircase encoder's architecture, which 
aims to provide high throughput and low latency, is shown in the previous figure. It has 
registers to store the values in, as well as a bit matrix multiplier, bit matrix adder, and parity 
generator matrix. The bit matrix multiplier needs input data in the initial step of the design 
process. The Pb submatrix, which provides the multiplier with processing data, is one of two 
submatrices that make up the parity generation matrix. The bit matrix multiplier's architectural 
diagram and explanation of how it works are shown below.  For example, if we design for a 
12-bit input data Ak and let the number of bits from Pb be 3 bits or 3 partial parity multipliers 
then through multiplication we get a final of 36 bits as the result.  
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Fig. 1. Block diagram of 36-bit matrix multiplier. 

 

  In the figure 1, we see a clear operation of the 12-bit input data being given and 3 parity 
multipliers which have single row operation in which each block there are 4 multipliers after 
which all the bits are XORed and gives a single bit as output. The multiplier has a 3 bit modulo 
two multipliers, which means 4 multipliers have an operation of 4x3 which gives 12 as the 
input data, and from the parity generator Pb we get 3 parity multipliers which gives 12x3=36 
bits for a single row operation.  

 
Fig. 2. Block diagram of 4-bit parallel multiplier. 

 

  This is 4-bit parallel multiplier as demonstrated, the block diagram of a single row 
operation of a single block is shown in the Fig. 2, which consists of 4-bit parallel multipliers. 
For each multiplier there is a 3-bit input multiplier present which gives 3-bit data and from 
each multiplier unit we get 12-bit data as 4X3=12 multiplication takes place, and the 12-bit 
data multiplies with each 3-bit multipliers to give 36-bit data as the output. Similarly for 478 
input bits the operation is explained below instead of 36 bits and Pb, the parity generation 
matrix we take 32 parity multipliers in which for single row operations 159 multipliers are 
given and 159x3=477 bits are produces and the remaining one bit (478) it is given to an AND 
operation and all of the bits are XORed to give one single bit.  
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Fig. 3. Block diagram of 478-bit matrix multiplier. 

 

  In Figure 4, is the logic diagram of 3-bit input multiplier which consists of AND and 
XOR gates. The input to the 3 AND gates is the input Ak and Pb memory bit data. The above 
diagram is an example taken from multiplier unit 2 of single row operation. The input data is 
given through AND gates and are XORed to give the final 3-bit output from a single multiplier 
unit and as 4 multipliers are there in parallel, the 3-bit data multiplies with the 4 multiplier 
units and gives a 12-bit data(4x3=12).  

 
Fig. 4. Block diagram of 3-bit input multiplier. 

Similarly, as shown in the figure 3, for input data such as 478-bit input data in 
form of Ak, where 32 parity multipliers are present and Pb which is the memory bit input 
data(32x478), 159 multiplier units are there in every single row operation and 32 such 
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Similarly, as shown in the figure 3, for input data such as 478-bit input data in 
form of Ak, where 32 parity multipliers are present and Pb which is the memory bit input 
data(32x478), 159 multiplier units are there in every single row operation and 32 such 

multipliers are placed parallelly. Each multiplier has a 3-bit multiplier, therefore for 159 such 
units we get the result as 477(159x3) and for 32 such parity multipliers 32x478 we get the 
output. Hence, we prove here that, as for 36 bits or as large as 478 bits the operation 
performed is same and we get the accurate results. In the bit-matrix multiplier the modulo-2 
augmentation is applied to Ak (I) and Pb in lined up by ANDing and XORing of pieces in 
Ak (i) with columns in Pb to deliver 32 halfway equality bits Cp2, k(i). The piece grid 
multiplier comprises of 32 equality multipliers that process the 32 equality pieces of Cp2, k 
(I) simultaneously. Every equality multiplier registers 1 bit of Cp2, k(i).  The equal 
calculation likewise occurs inside the equality multiplier by utilizing 159 multiplier units. 
Every multiplier unit process 3 pieces from a column of PT b and Ak (I), separately. The 
quantity of information pieces of multiplier units is chosen to accomplish high parallelization 
level. The pieces produced from the multiplier units are XORed with the pieces created by 
ANDing the last piece of Ak (i) with the last piece of line of PT b. The last processed esteem 
structures one of the pieces in Cp2, k(i). 

3 RESULTS 
 Through the figure 4, simulation result for a 36-bit output data it is shown that Ak is 12 bits, 
Pb which is the outcome is 36 bits and y is the 3-bit parity multiplier. Through the bit matrix 
multiplication of Ak and y the total outcome is observed to be 36 bits.  
 

  
Fig. 5. 36-bit matrix multiplier simulation result. 

 

 
Fig. 6. 478-bit matrix multiplier simulation result. 

 
Similar to that of the 36 bits bit matrix multiplier, for generation of larger number 

bits can be done by taking the input data bits as 478(Ak), with the help of 32 parity multipliers 
and 159 multiplier units, where each unit gives a 32-bit output data. Through multiplication 
of Ak and Pb which is 478x32 we obtain 15296 bits of data through bit matrix multiplication. 
Here in figure, it is observed that the schematic view of the design of 478 bits which proves 
that similarly generation of smaller or larger bits can be executed which can be used in the 
real time applications such as error free coding.  The synthesis results of the Bit matrix 
Multiplier obtained from Synopsys tool. The figure 7 specifies the mapped gate level netlist-
based schematic for bit matrix multiplier using 90nm technology. 
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Fig. 7. Internal schematic view of 478-bit matrix multiplier. 

 

 
Fig. 8. ASIC design layout of the 478-bit matrix multiplier. 

4 CONCLUSION  
The Bit Matrix Multiplier operates using combinational logic and does not receive clock input, 
which results in a reduction in power consumption. We will support an equal flight of stairs 
encoder strategy to achieve high throughput and low inertness. A Piece framework Multiplier, 
Spot Network Viper, Equality Age Units, Equality Touch Registers, ROMs, Multiplexer, 
Regulator, Information Buffer, and Data Formatter are all included in the engineering of a 
flight of stairs encoder. As a result, we used the Bit-Matrix Multiplier in our project, which is 
one of the key building elements in the design of staircase encoders and aids in lowering power 
consumption. As the Bit-Matrix Multiplier is used, power consumption is lowered.  It helped 
with the design of a forward error correction (FEC) encoder with high throughput, low 
dormancy, and power. The multistage pipelined design of this encoder enables excellent 
effectiveness in terms of throughput and region. The area consumed by the bit matrix 
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flight of stairs encoder. As a result, we used the Bit-Matrix Multiplier in our project, which is 
one of the key building elements in the design of staircase encoders and aids in lowering power 
consumption. As the Bit-Matrix Multiplier is used, power consumption is lowered.  It helped 
with the design of a forward error correction (FEC) encoder with high throughput, low 
dormancy, and power. The multistage pipelined design of this encoder enables excellent 
effectiveness in terms of throughput and region. The area consumed by the bit matrix 

multiplier given by generating the area report is 195618.33mm2 with 82174 ports and 34 
sequential cells. The power generated through the design compiler obtained is a total power 
of 38.68mW with a operating voltage of 1.2V and leakage power of 620.43uW. FEC increases 
the throughput of the functional framework while reducing the number of transmission errors 
and the power requirements for correspondence systems. To use less electricity, the flight of 
stairs encoder's control theory can be further developed. 
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