Design and analysis of drone propeller by using aluminium and nylon materials

H. Sai Teja¹, *Gnanendar* Chawan¹, *Sree* Nilay¹, *D. Eswaraiah*¹, and *U.S. Jyothi*¹ ¹Department of Mechanical Engineering, Gokaraju Rangaraju Institute of Engineering and Technology, Hyderabad, Telangana 500090, India.

Abstract: It is undeniable fact that the importance of drones has increased in every aspect of the daily life such as Defence, agriculture, film shooting, disaster management, transportation etc. In the view to increasing the efficiency of a drone, Using Solid works it is proposed to design the Drone Propellers and analyse the output parameters such as thrust produced, pressure and velocity of the propeller. The objective of this research work is to design thrust optimized blade of length 134mm and 167mm with a density of air 1.204 kg/m3 and perform thrust, velocity and pressure analysis with respect to change in material, RPM, angle, and length of the blade. The property of aluminium 1060 H12 and Nylon 101 being lightweight is chosen for designing and analysing of blades. The modal analysis shows the first natural frequency occurs at around 5000 RPM which is safe for operating the blade. So, it had been considered as 2500rpm and 3500rpm to calculate thrust and other parameters as mentioned. The CFD analysis of the model was performed in solid works and required parameters has been obtained.

1. Introduction:

Drones have become an age that no longer like toys or playing flies for those interested and enthusiasts. A drone can be considered an unmanned aerial vehicle (UAV). Quadro copter is short for a quadrotor helicopter, which is also commonly known as a quadrotor and drone. This mechanism uses a multi-rotor for lifting and propulsion against gravity with four rotors widely used for many purposes these days. A pair of diagonal propellers will rotate clockwise and another pair counter clockwise. This motor rotation speed is used to control the direction and achieve the movement of the drone. Propellers are one of the fundamental elements of aircraft propulsion and construction, they function as a rotating wing that creates lift in the same direction as the axis of rotation.

^{*}Corresponding author: d.eswaraiah@gmail.com

A propeller is a rotating air foil that is mounted on the motor crankshaft and has at least two sharp edges attached to it. A propeller can convert mechanical energy into useful thrust. The cutting edges of a propeller have a leading edge, the following edge, a tip, a shank, a face, and a back. Propellers convert rotating motion from electric motors, turboprop engines, or cylinder motors into propulsion power. They could have a fixed pitch or fluctuate. A cylinder motor's crankshaft typically has a propeller attached to it, either directly or indirectly through a reducing unit. Although large motors and turboprop airliners typically do not require multifaceted quality of adapting, light airship motors frequently don't require this quality of adapting.

2. Propeller material:

Aluminium 1060 Alloy:

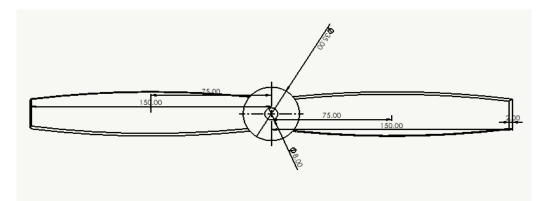

Material propertie					
	lefault library	/ can not	be edited. You m	ust first copy the mater	ial to a
Model Type:	Linear Elas	tic Isotro	pic ~	Save model type	in library
Units:	SI - N/mm^2 (MPa)				
Category:	Aluminiun	n Alloys			
Name:	1060 Alloy				
Default failure criterion:	Max von M	lises Stre	ss 🗸		
Description:					
Source:					
Sustainability:	Defined				
Property		Value	Units		
Elastic Modulus		69000	N/mm^2		
Poisson's Ratio		0.33	N/A		
Shear Modulus		27000	N/mm^2		
Mass Density		2700	kg/m^3		
Tensile Strength		68.9356	N/mm^2		
Compressive Strength			N/mm^2		
Yield Strength		27.5742	N/mm^2		
Thermal Expansion Coefficient		2.4e-05	/К		
Thermal Conductivity		200	W/(m·K)		
Specific Heat		900	J/(kg⋅K)		
Material Damping Ratio			N/A		

Fig.2.1 Aluminium 1060 Alloy

Propeller Design:

Pitch angle, flow angle, chord distribution at the blade span, and twist distribution are only a few of the numerous factors that have an impact on the building of propellers. The propeller will be built using the theory of blade elements. If vibration could be tolerated, a single-blade propeller would be the most effective. Therefore, a two-bladed propeller is the best in terms of practicality for achieving a reasonable level of balance with far less vibration.

Fig.2.2 Propeller design

Table 2.1 Propeller dimensions:

S.No.	Specifications	Dimensions
1.	Length of blade	150mm.
2.	Angle of cut	15deg.
3.	Thickness of blade	2mm.
4.	Mid blade length	75mm.

Table 2.2 Simulation results of standard data:

LENGTH OF PROPELLER (mm)	RPM PROPELLER	OF	THRUST OBTAINED(N)
150 mm	2500		1.57
150 mm	3500		2.61

3. Analysis data:

Name	Unit	Value	Criteria	Delta	
Total Pressure	Ра	100806.42	1227.91829	626.370411	
Velocity	m/s	-11.465	4.8665587	3.29658106	
Force (thrust)	N	0.343	5.64076708	1.14475515	

Table 3.1 Simulation results of propeller at 2500rpm

Fig 3.1 Velocity, pressure and thrust combined graph

Name	Unit	Value	Criteria	Delta
Total Pressure	Ра	100027.52	1453.38644	520.10
GG Minimum Velocity	m/s	-4.034	9.34657763	9.01
Force (thrust)	N	2.780	95.2721132	3.44

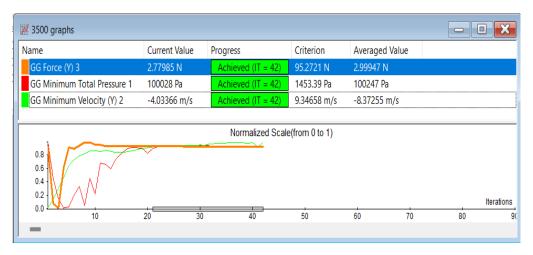


Fig 3.2 Velocity pressure and thrust a combined graph:

Table 3.3 Result comparison of standard dat	ta v/s analysis data:
---	-----------------------

RPM	Standard Thrust(N)	Analysis Thrust(N)	Difference(N)
2500	1.57	0.685688	0.884312
3500	2.61	2.99947	0.38947

At 2500 rpm the Analysis Thrust is less than standard thrust, and error parameters is obtained. And at 3500 the Analysis Thrust is higher than Standard thrust.

So, by comparing both the rpms, 3500 rpm looks more efficient compared to standard data.

4. Change in parameters of propeller:

Changing the parameters of Propeller like Length, Angle of Cut, RPM, Material, and the analysis is performed to get the results.

Material used and its properties:

Material properties Materials in the default library can not be edited. You must first copy the material to a custom library to edit it. Model Type: Linear Elastic Isotropic Save model type in library Units: SI - N/mm^2 (MPa) Category: Aluminium Alloys
Units: SI - N/mm^2 (MPa)
Category: Aluminium Alloys
Name: 1060-H12
Default failure Max von Mises Stress ~
Description:
Source:
Sustainability: Defined
Property Value Units
Elastic Modulus 69000 N/mm^2
Poisson's Ratio 0.33 N/A

Poisson's Ratio	0.33	N/A
Shear Modulus	26000	N/mm^2
Mass Density	2705	kg/m^3
Tensile Strength	85	N/mm^2
Compressive Strength		N/mm^2
Yield Strength	75	N/mm^2
Thermal Expansion Coefficient	2.36e-05	/К
Thermal Conductivity	230	W/(m·K)
Specific Heat	900	J/(kg·K)
Material Damping Ratio		N/A

Fig 4.1 Aluminium 1060 Alloy

roperties Table	es & Curves	Appearance	CrossHatch	Custom	Application Data	Favorites	She 🖣	
Material prope Materials in th custom library	ne default lib	rary can not b	e edited. You	ı must firs	t copy the materia	al to a		
Model Type:	Linear	Elastic Isotropi	с	~	Save model type i	n library		
Units:	SI - N/r	mm^2 (MPa)		~				
Category:	Plastic	5						
Name:	Nylon	101						
Default failure criterion:	Max vo	n Mises Stress		\sim				
Description:								
Source:								
Sustainability:	Define	d						
Property		Value	Units					T
Elastic Modulus	5	1000	N/mm^2					
Poisson's Ratio	I	0.3	N/A					
Shear Modulus	;		N/mm^2					
Mass Density		1150	kg/m^3					
Tensile Strengt	h	79.289709	N/mm^2					
Compressive St	trength		N/mm^2					
Yield Strength		60	N/mm^2					
Thermal Expans	sion Coeffici	ent 1e-06	/К					
Thermal Conductivity 0.53		W/(m·K)						
Specific Heat		1500	J/(kg·K)					
Material Damp	ing Ratio		N/A					

Fig 4.2 Nylon 101

4(a) 2500rpm:

MATERIAL	LENGTH	ANGLE	THRUST(N)	PRESSURE(Pa)	VELOCITY(m/s)
	(mm)	(deg)			
Aluminium	134	10	0.467	101318.84	4.966
Nylon	134	10	6.072	101454.92	20.052

Table 4.1 Simulation result of propeller length 134 mm & angle 10deg for 2500rpm:

Table 4.2 Comparing propellers of aluminium and nylon at 10deg for 134mm length and 2500rpm:

	ALUMINIUM	NYLON	DIFFERENCE
THRUST(N)	0.467	6.072	5.605
PRESSURE(Pa)	101318.84	101454.92	136.08
VELOCITY(m/s)	4.966	20.052	15.086

Based on the angle & rpm of propeller, the thrust, pressure, and velocity vary. Thrust production is mainly considered in Propeller design. The simulated values are calculated and errors are noted above. As the thrust of nylon blade of angle 10deg is higher and better than aluminium of angle 10deg. So, in the case above nylon is efficient and better to be used.

Table 4.3 Simulation result of propeller length 134 mm & angle 15deg for 2500rpm:

MATERIA	LENGT	ANGL	THRUST(N	PRESSURE(Pa	VELOCITY(m/s
L	H (mm)	E (deg))))
Aluminium	134	15	1.778	101318.90	0.066
Nylon	134	15	3.425	101572.40	17.660

Table 4.4 Comparing propellers of aluminium and nylon at 15deg for 134mm length and 2500rpm:

	ALUMINIUM	NYLON	DIFFERENCE
THRUST(N)	1.778	3.425	1.647
PRESSURE(Pa)	101318.90	101572.40	253.5
VELOCITY(m/s)	0.066	17.660	17.594

Based on the angle & rpm of propeller, the thrust, pressure, and velocity vary. Thrust production is mainly considered in Propeller design. The simulated values are calculated and errors are noted above. As the thrust of nylon blade of angle 15deg is higher and better than aluminium of angle 15deg. So, in the case above nylon is efficient and better to be used.

Comparing the angle of cut of propeller's 10degree v/s 15degree:

By observing the thrust values of aluminium 10deg & 15deg and nylon 10deg & 15deg. The thrust production of nylon is higher in both the cases, so nylon is better to be used.

MATERIA	LENGT	ANGL	THRUST(N	PRESSURE(Pa	VELOCITY(m/s
L	H (mm)	E (deg))))
Aluminium	167	10	3.960	101318.56	0.034
Nylon	167	10	92.422	101948.95	47.575

Table 4.5 Simulation result of propeller length 167 mm & angle 10deg for 2500rpm:

Table 4.6 Comparing propellers of aluminium and nylon at 10deg for 167mm lengthand 2500rpm:

	ALUMINIUM	NYLON	DIFFERENCE
THRUST	3.960	92.422	88.462
PRESSURE(Pa)	101318.56	101948.95	630.39
VELOCITY(m/s)	0.034	47.575	47.541

Based on the angle & RPM of propeller, the thrust, pressure, and velocity vary. Thrust production is mainly considered in Propeller design. The simulated values are calculated and errors are noted above. As the thrust of nylon blade of angle 10deg is higher and better than aluminium of angle 10deg. So, in the case above nylon is efficient and better to be used.

Table 4.7 Simulation result of	propeller length 167 m	m & angle 15deg for 2500rpm:
	propenet lengen rot in	in to angle ready for secon plant

MATERIA	LENGT	ANGL	THRUST(N	PRESSURE(Pa	VELOCITY(m/s
L	H (mm)	E (deg))))
Aluminium	167	15	17	102576.44	15.360
Nylon	167	15	0.839	102433.70	43.730

Table 4.8 Comparing propellers of aluminium and nylon at 15deg for 167mm lengthand 2500rpm:

	ALUMINIUM	NYLON	DIFFERENCE
THRUST(N)	17	0.839	16.161
PRESSURE(Pa)	102576.44	102433.70	142.74
VELOCITY(m/s)	15.360	43.730	28.37

Based on the angle & rpm of propeller, the thrust, pressure, and velocity vary. Thrust production is mainly considered in Propeller design. The simulated values are calculated and errors are noted above. As the thrust of aluminium blade of angle 10deg is higher and better than nylon of angle 10deg. So, in the case above aluminium is efficient and better to be used.

Comparing the angle of cut of propeller's 10degree v/s 15degree:

By observing the thrust values of aluminium 10deg & 15deg and nylon 10deg & 15deg. The thrust production of nylon is higher, so nylon is better to be used.

4(b) 3500rpm:

MATERIA	LENGT	ANGL	THRUST(N	PRESSURE(Pa	VELOCITY(m/s
L	H (mm)	E (deg))))
Aluminium	134	10	20.386	101319.54	0.114
Nylon	134	10	42.665	101820.80	32.585

Table 4.9 Simulation result of propeller length 134 mm & angle 10deg for 3500rpm:

Table 4.10 Comparing propellers of aluminium and nylon at 10deg for 134mm lengthand 3500rpm:

	ALUMINIUM	NYLON	DIFFERENCE
THRUST(N)	20.386	42.665	22.279
PRESSURE(Pa)	101319.54	101820.80	501.26
VELOCITY(m/s)	0.114	32.585	32.471

Based on the angle & RPM of propeller, the thrust, pressure, and velocity vary. Thrust production is mainly considered in Propeller design. The simulated values are calculated and errors are noted above. As the thrust of nylon blade of angle 10deg is higher and better than aluminium of angle 10deg. So, in the case above nylon is efficient and better to be used.

Table 4.11 Simulation result of propeller length 134 mm & angle 15deg for 3500rpm:

MATERIA	LENGT	ANGL	THRUST(N	PRESSURE(Pa	VELOCITY(m/s
L	H (mm)	E (deg))))
Aluminium	134	15	0.611	101319.23	0.012
Nylon	134	15	2.708	101803.79	18.705

Table 4.12 Comparing propellers of aluminium and nylon at 15deg for 134mm lengthand 3500rpm:

	ALUMINIUM	NYLON	DIFFERENCE
THRUST(N)	0.611	2.708	2.097
PRESSURE(Pa)	101319.23	101803.79	484.56
VELOCITY(m/s)	0.012	18.705	18.693

Based on the angle & RPM of propeller, the thrust, pressure, and velocity vary. Thrust production is mainly considered in Propeller design. The simulated values are calculated and errors are noted above. As the thrust of nylon blade of angle 10deg is higher and better than aluminium of angle 10deg. So, in the case above nylon is efficient and better to be used.

Comparing the angle of cut of propeller's 10degree v/s 15degree:

By observing the thrust values of aluminium 10deg & 15deg and nylon 10deg & 15deg. The thrust production of nylon is higher in both the cases, so nylon is better to be used.

Table 4.13 Simulation result of propeller of length 167 mm & angle 10deg for3500rpm:

MATERIA	LENGT	ANGL	THRUST(N	PRESSURE(Pa	VELOCITY(m/s
L	H (mm)	E (deg))))
Aluminium	167	10	13.542	101318.74	0.057
Nylon	167	10	102.422	101948.95	47.422

Table 4.14 Comparing propellers of aluminium and nylon at 10deg for 167mm lengthat 3500rpm:

	ALUMINIUM	NYLON	DIFFERENCE
THRUST(N)	13.542	102.422	88.88
PRESSURE(Pa)	101318.74	101948.95	630.21
VELOCITY(m/s)	0.057	47.422	47.365

Based on the angle & rpm of propeller, the thrust, pressure, and velocity vary. Thrust production is mainly considered in Propeller design. The simulated values are calculated and errors are noted above. As the thrust of nylon blade of angle 10deg is higher and better than aluminium of angle 10deg. So, in the case above nylon is efficient and better to be used.

Table 4.15 Simulation result of propeller of length 167mm & angle 15deg for3500rpm:

MATERIA	LENGT	ANGL	THRUST(N	PRESSURE(Pa	VELOCITY(m/s
L	H (mm)	E (deg))))
Aluminium	167	15	18.485	101318.77	0.062
Nylon	167	15	0.839	102433.70	43.730

	ALUMINIUM	NYLON	DIFFERENCE
THRUST(N)	18.485	0.839	17.646
PRESSURE(Pa)	101318.77	102433.70	1114.93
VELOCITY(m/s)	0.062	43.730	43.668

Table 4.16 Comparing propellers of aluminium and nylon at 15deg for 167mm lengthat 3500rpm:

Based on the angle & RPM of propeller, the thrust, pressure, and velocity vary. Thrust production is mainly considered in Propeller design. The simulated values are calculated and errors are noted above. As the thrust of aluminium blade of angle 10deg is higher and better than nylon of angle 10deg. So, in the case above aluminium is efficient and better to be used.

Comparing the angle of cut of propeller's 10degree v/s 15degree:

By observing the thrust values of aluminium 10deg & 15deg and nylon 10deg & 15deg. The thrust production of nylon is higher, so nylon is better to be used.

Table 4.17 Simulation result of propeller length 150mm of angle 15degree at 2500rpm and 3500rpm:

MATERIAL	LENGTH (mm)	RPM	ANGLE (deg)	THRUST (N)	PRESSURE (Pa)	VELOCITY (m/s)
Aluminium	150	2500	15	0.343	100806.42	-11.465
Aluminium	150	3500	15	2.780	100027.52	-4.034

Table 4.18 Simulation results of all the propellers for different lengths and angles at2500rpm

MATERIAL	LENGTH (mm)	ANGLE (deg)	THRUST (N)	PRESSURE (Pa)	VELOCITY (m/s)
Aluminium	134	10	0.467	101318.84	0.066
Aluminium	134	15	1.778	101318.90	0.066
Aluminium	167	10	3.960	101318.56	0.034
Aluminium	167	15	0.839	102433.70	43.730
Nylon	134	10	6.072	101454.92	20.052
Nylon	134	15	3.425	101572.40	17.660
Nylon	167	10	92.422	101948.95	47.575
Nylon	167	15	0.839	102433.70	43.730

MATERIAL	LENGTH (mm)	ANGLE (deg)	THRUST (N)	PRESSURE (Pa)	VELOCITY (m/s)
Aluminium	134	10	20.386	101319.54	0.114
Aluminium	134	15	0.611	101319.23	0.012
Aluminium	167	10	13.542	101318.74	0.057
Aluminium	167	15	18.485	101318.77	0.062
Nylon	134	10	42.665	101820.80	32.585
Nylon	134	15	2.708	101803.79	18.705
Nylon	167	10	102.422	101948.95	47.422
Nylon	167	15	0.839	102433.70	43.730

Table 4.19 Simulation results of all the propellers for different lengths and angles at3500rpm

- From the table 4.18, nylon of length 167mm and angle of 10deg has produced the simulation thrust of 92.422N.
- From the table 4.19, nylon of length 167mm and angle of 10deg has produced the simulation thrust of 102.422N.

Conclusion:

- The blades designed of different lengths (134mm & 167mm) and angle (10deg & 15deg) and CFD analysis performed in Solid works, and results are dragged out at 2500 and 3500rpm.
- Those results were compared to previous(standard) data...
- The CFD thrust analysis of propeller 150 mm gave a thrust of 0.343N at 2500rpm, and thrust of 2.780N at 3500rpm, a bit more compared to the previous(standard) data.
- Thrust production is mainly considered in propeller design & for practical usage.
- Amongst all the propeller, Nylon of length 167mm produces a thrust of 92.422N at 2500rpm and thrust of 102.422N at 3500rpm, shows up to be produced highest thrust under simulation.
- However here, numerical analysis differs from experimental analysis.
- Thus, further experimentation/investigation suggested in order to improve the result.

References:

[1] P. L. Coronado, F. Stetina, and D. Jacob, "New technologies to support NASA's Mission to Planet Earth satellite remote sensing product validation: use of an unmanned autopiloted vehicle (UAV) as a platform to conduct remote sensing," Robotic and Semi-Robotic Ground Vehicle Technology, **vol. 3366**, pp. 38–49, (1998).

[2] S. R. Herwitz, L. F. Johnson, J. C. Arvesen, R. G. Higgins, J. G. Leung, and S. E. Dunagan, "Precision agriculture as a commercial application for solar powered unmanned aerial vehicles," in AIAA's 1st Technical Conference and workshop on Unmanned Aerospace Vehicles, p. 7, Portsmouth, Virginia, (2002).

[3] L. F. Johnson, S. Herwitz, S. Dunagan, B. Lobitz, D. Sullivan, and R. Slye, "Collection of ultra-high spatial and spectral resolution image data over California vineyards with a small UAV," Proceedings of the 30th International Symposium on Remote Sensing of Environment (ISRSE), pp. 3–5, (2003), <u>http://www.uav-applications.org/gallery/img/5.pdf</u>.

[4] H. Eisenbeiss, "A mini unmanned aerial vehicle (UAV): system overview and image acquisition," International Archives of Photogrammetry. Remote Sensing and Spatial Information Sciences, **vol. 36**, no. 5/W1, p. 7, (2004).

[5] S. Nebiker, A. Annen, M. Scherrer, and D. Oesch, "A lightweight multispectral sensor for micro-UAV-opportunities for very high resolution airborne remote sensing," The international archives of the photogrammetry, remote sensing and spatial information sciences, **vol. 37**, pp. 1193–1199, (2008).

[6] G. Romeo, G. Frulla, E. Cestino, and G. Corsino, "HELIPLAT: design, aerodynamic, structural analysis of long-endurance solar-powered stratospheric platform," Journal of Aircraft, **vol. 41**, no. 6, pp. 1505–1520, (2004).

[7] S. Jashnani, T. R. Nada, M. Ishfaq, A. Khamker, and P. Shaholia, "Sizing and preliminary hardware testing of solar powered UAV," The Egyptian Journal of Remote Sensing and Space Science, **vol. 16**, no. 2, pp. 189–198, (2013).

[8] T. E. Noll, J. M. Brown, M. E. Perez-Davis, S. D. Ishmael, G. C. Tiffany, and M. Gaier, Investigation of the Helios Prototype Aircraft Mishap, (2004), https://www.nasa.gov/pdf/ 64317main_helios.pdf.

[9] X. Zhu, Z. Guo, and Z. Hou, "Solar-powered airplanes: a historical perspective and future challenges," Progress in Aerospace Science, vol. 71, pp. 36–53, (2014). International Journal of Aerospace Engineering 11.

[10] J. B. McDevitt and A. F. Okuno, Static and Dynamic Pressure Measurements on a Naca 0012 Air foil in the Ames High Reynolds Number Facility, (1985).

[11] E. Llorente, A. Gorostidi, M. Jacobs, W. A. Timmer, X. Munduate, and O. Pires, "Wind tunnel tests of wind turbine airfoils at high Reynolds numbers," Journal of Physics Conference Series, **vol. 524**, no. 1, p. 10, (2014).

[12] P. Giguére and M. S. Selig, "New airfoils for small horizontal axis wind turbines," The Journal of Solar Energy Engineering, **vol. 120**, no. 2, pp. 108–114, (1998).

[13] R. K. Singh, M. R. Ahmed, M. A. Zullah, and Y. H. Lee, "Design of a low Reynolds number airfoil for small horizontal axis wind turbines," Renewable energy, **vol. 42**, pp. 66–76, (2012).

[14] P. Shin and K. Kim, "Aerodynamic performance prediction of SG6043 airfoil for a horizontal-axis small wind turbine," Journal of Physics: Conference Series, **vol. 1452**, no. 1, p. 11, (2020).

[15] S. Sharma, "An aerodynamic comparative analysis of airfoils for low-speed aircrafts," International Journal of Engineering Research, **vol. 5**, no. 11, pp. 525–529, (2016).

[16] S. A. Oller, L. G. Nallim, and S. Oller, "Usability of the Selig S1223 profile airfoil as a high lift hydrofoil for hydrokinetic application," Journal of Applied Fluid Mechanics, **vol. 9**, no. 2, pp. 537–542, (2016).

[17] R. R. Glassock, Design, Modelling and Measurement of Hybrid Powerplant for Unmanned Aerial Vehicles (UAVs), Queensland University of Technology, (2012).

[18] W. A. Mair and D. L. Birdsall, Aircraft Performance, Cambridge University Press, (2009).

[19] B. A. Moffitt, T. H. Bradley, D. E. Parekh, D. Mavris, and E. Hartford, "Validation of vortex propeller theory for UAV design with uncertainty analysis," in 46th AIAA Aerospace Sciences Meeting and Exhibit, pp. 1–19, (2008).

[20] M. K. Rwigema, "Propeller blade element momentum theory with vortex wake deflection," 27th International congress of the aeronautical sciences, **vol. 1**, pp. 727–735, (2010).