
 

Performance Comparison of Depth Limited 
Search and A* Algorithm: A Case Study 

R. P. Ram Kumar1, Tarun Sri Sai Vadlapatla2*, Siddarda Azmeera2, Adityaram Komaraneni2, 
Abhishek Jula2  
1Department of AIMLE, GRIET, Hyderabad, Telangana, India 
2 UG Student, Department of CSBS, GRIET, Hyderabad, Telangana, India 

Abstract. Search algorithms are an essential component of many artificial 
intelligence applications. Depth Limited Search and A* Search are two 
prominent search algorithms that have been widely used in various domains, 
including robotics, game playing, and natural language processing. The 
research paper presents an overview of these two algorithms, their 
architecture, pros and cons, and the areas of their application. A detailed 
comparison of these two algorithms in terms of their performance, 
efficiency, and effectiveness in solving various search problems is also 
analysed. Finally, the paper presents a case study for two approaches. 
Experimental results depicted that after repetitive execution of each 
algorithm and graph data, it was detected that while the A-star search was 
able to find the cheaper cost almost always, Depth Limited Search was able 
to find the route faster with limited node visits. 

1 Introduction to search algorithms 
The objective of search algorithms is to identify a solution for the given problem by exploring 
a search space of probable solutions. The search space can be represented as a tree or a graph, 
where each node represents a possible state or configuration of the problem, and the edges 
represent the possible transitions between states. 
 Artificial intelligence (AI) search algorithms allude to a group of methods AI systems 
use to scour a problem space and identify an ideal or nearly ideal response to a specific issue. 
These methods are employed to search through graphs, forests, or other types of structures 
for a route or a group of answers that meet a set of requirements. Typical AI search algorithm 
instances include the following: Depth-First Search (DFS) is an algorithm that can be used 
to navigate a tree or graph and is frequently used in artificial intelligence to investigate all 
potential answers to an issue. To build more complex AI systems, DFS is frequently 
combined with other search methods. This algorithm, called Breadth-First search (BFS), is 
similar to DFS where it examines every potential answer at one depth level before going on 
to the next. The shortest route between two locations in a graph or tree can be found with the 
help of BFS. The A* Search heuristic search algorithm blends the DFS and BFS 
methodologies. A* employs a heuristic function to direct the search in the direction of the 

 
* Corresponding author: tarunsrisai03@gmail.com  

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons 
Attribution License 4.0 (https://creativecommons.org/licenses/by/4.0/).

E3S Web of Conferences 391, 01140 (2023) https://doi.org/10.1051/e3sconf/202339101140
ICMED-ICMPC 2023



most likely avenue, rendering it one of the most successful and popular search methods in 
AI. Simulated annealing: This algorithm uses probabilistic methods to explore the search 
universe in order to discover an answer that is close to the ideal one. Simulated annealing is 
especially helpful for issues where it is challenging to locate the precise optimal answer. In 
order to handle optimization issues, genetic algorithms resemble the process of natural 
selection. A community of potential solutions is used by genetic algorithms, which then use 
mutation and selection operators to gradually develop the best solution. Iteratively improving 
the answer by moving to a neighbouring spot with a better solution, the straightforward 
optimisation method known as “hill climbing” starts at a random location in the search area. 

2 Uninformed searches  
Uninformed search is also called blind search. This term means that the search is not given 
any additional information about the state beyond what is provided in the problem definition. 
They can only generate successors and distinguish between goal states and non-goal states. 
All search strategies differ in the order in which nodes are expanded. Strategies for knowing 
whether one non-target state is more likely than another are called informed or heuristic 
search strategies [1]. Figure 1(A) depicts the types of Uninformed search techniques. 

 
Fig. 1(a). Uninformed search techniques. 

3 Informed search 
It is easy to see that uninformed searches pursue options that lead away from goals just as 
easily as they pursue options that lead to them. This finds all but the smallest problems that 
take up an unacceptably large amount of time or space. Informed search attempts to reduce 
the search work you need to perform by making intelligent decisions about which nodes are 
selected for traversal. This means that there exists a way to evaluate the probability that a 
given node is on the solution path. Usually this is done using a heuristic function [2]. Figure 
1(B) depicts the types of informed search techniques. 

 
Fig. 1(B). Informed search techniques. 

2

E3S Web of Conferences 391, 01140 (2023) https://doi.org/10.1051/e3sconf/202339101140
ICMED-ICMPC 2023



most likely avenue, rendering it one of the most successful and popular search methods in 
AI. Simulated annealing: This algorithm uses probabilistic methods to explore the search 
universe in order to discover an answer that is close to the ideal one. Simulated annealing is 
especially helpful for issues where it is challenging to locate the precise optimal answer. In 
order to handle optimization issues, genetic algorithms resemble the process of natural 
selection. A community of potential solutions is used by genetic algorithms, which then use 
mutation and selection operators to gradually develop the best solution. Iteratively improving 
the answer by moving to a neighbouring spot with a better solution, the straightforward 
optimisation method known as “hill climbing” starts at a random location in the search area. 

2 Uninformed searches  
Uninformed search is also called blind search. This term means that the search is not given 
any additional information about the state beyond what is provided in the problem definition. 
They can only generate successors and distinguish between goal states and non-goal states. 
All search strategies differ in the order in which nodes are expanded. Strategies for knowing 
whether one non-target state is more likely than another are called informed or heuristic 
search strategies [1]. Figure 1(A) depicts the types of Uninformed search techniques. 

 
Fig. 1(a). Uninformed search techniques. 

3 Informed search 
It is easy to see that uninformed searches pursue options that lead away from goals just as 
easily as they pursue options that lead to them. This finds all but the smallest problems that 
take up an unacceptably large amount of time or space. Informed search attempts to reduce 
the search work you need to perform by making intelligent decisions about which nodes are 
selected for traversal. This means that there exists a way to evaluate the probability that a 
given node is on the solution path. Usually this is done using a heuristic function [2]. Figure 
1(B) depicts the types of informed search techniques. 

 
Fig. 1(B). Informed search techniques. 

4 Insight on DLS and A* search algorithms 
Two popular search algorithms used in artificial intelligence are Depth Limited Search (DLS) 
and A* search. search method with a depth restriction that restricts the search tree's maximum 
depth. The method investigates every level of the tree starting at the root node and continues 
until the maximum depth is reached. The method goes back to the previous level and explores 
the previous branch if a solution is not discovered at that depth. Once the search space has 
been thoroughly examined or a solution has been located, this process is repeated. On the 
other hand, A* search is a heuristic search method that directs the search towards the most 
promising nodes in the search space using an evaluation function. The algorithm keeps track 
of a priority queue of nodes that need to be enlarged, where the priority is determined by the 
sum of the costs associated with getting to each node and the predicted costs associated with 
getting to the destination node. 

4.1 Depth limited search 

DLS is a variant of DFS where the search is limited to a specified depth. The purpose of the 
depth limit is to prevent DFS from searching indefinitely, in case the search space has an 
infinite depth or is too large to be explored entirely. DLS begins at the base node and 
recursively examines every node at its current level before heading to the next level. If the 
goal state is not found at the current depth level, the algorithm moves to the next level until 
the depth limit is reached or the goal state is found [3]. 

4.2 DLS algorithm steps  

The following section illustrates the steps regarding DSL algorithm summarized from [1]. 
 

1. Determine the start node and search depth. 
2. Check if the current node is the goal node. 

a. If not: do nothing 
b. If yes: return 
c. If the current node is the goal state, return the node. 

3. Verify that the present one fits within the limits of the search level. 
a. If so, then expand the node and stack all of its descendants. 
b. If not: Take no action.  

4. Repetitively call DLS for each node in the stack, then return to Step 2. 

4.3 Performance assessment 

1. Completeness: It is finished if the shallowest goal was successfully attained. 
2. Optimality: Non-optimal since the depth could be higher than the node of choice. 

4.4 Advantages and disadvantages of DLS  

The advantage of DLS is that it saves memory by only examining nodes up to a certain depth 
limit. This is useful when the search space is too large to be fully explored. However, DLS 
may not be able to find a solution even if it exists beyond the depth limit. Furthermore, the 
effectiveness of DLS depends on the choice of depth limit, which can be difficult to forecast 
[4]. 

3

E3S Web of Conferences 391, 01140 (2023) https://doi.org/10.1051/e3sconf/202339101140
ICMED-ICMPC 2023



4.5 DLS applications  

DLS is a search algorithm that limits the depth of exploration in a search tree. DLS has some 
applications in different fields summarized from [5], includes the following: 
• Artificial Intelligence: DLS can be used in artificial intelligence for search problems 

where the search space is large, and an exhaustive search is not possible. The algorithm 
can be used to limit the depth of exploration in a search tree, reducing the search space 
and improving the search time. 

• Game Playing: DLS can be used in game playing to limit the search depth while 
evaluating game states. In games such as chess or checkers, it is not possible to search 
the entire game tree, and therefore, depth-limited search can be used to limit the depth 
of exploration and improve the search time. 

• Natural Language Processing: DLS can be used in natural language processing for tasks 
such as parsing and machine translation. The algorithm can be used to limit the depth of 
exploration when searching for the best parse tree or translation, reducing the search 
space and improving the search time. 

• Web Crawling: DLS can be used in web crawling to limit the depth of exploration when 
crawling websites. The algorithm can be used to limit the number of pages crawled, 
improving the crawling speed and reducing the load on the web server.  

• Robotics: DLS can be used in robotics for path planning and obstacle avoidance. The 
algorithm can be used to limit the depth of exploration when searching for the best path, 
reducing the search space and improving the path planning time. 

4.6 Performance Analysis 

In summary, Depth-limited search (DLS) is a useful search algorithm that can be used in 
various fields to limit the depth of exploration in a search tree, improving the search time and 
reducing the search space. Its applications include artificial intelligence, game playing, 
natural language processing, web crawling, and robotics. 

4.7 DLS: A case study 

Figure 2 shows five nodes, namely, A, B, C, D, and E, make up the graph, and a directed path 
leads from A to C, then from C to B. Thirteen nodes, namely, A, B, C, D, E, F, G, H, I, J, K, 
L and M, make up the graph in Figure 3, and a directed path leads from A to E, then from E 
to H, then from H to I, then from I to E, then from E to H, then from H to C, then from C to 
F. Further, twenty six nodes, namely, A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, 
T, U, V, W, X, Y and Z, make up the graph in Figure 4, and a directed path leads from B to 
L, then from L to M, then from M to S, then from S to Z, then from Z to T, then from T to D, 
then from D to Q, then from Q to S, then from S to Z, then from Z to T, then from T to D, 
then from D to Q, then from Q to S, then from S to K, then from K. Red coloured edges 
represents the path from start to goal state. 

4.8 A* search 

A* Search is a well-known search method that directs the search towards the desired state 
using a heuristic function. The closed list and the open list are both kept up to date by the 
algorithm. The nodes that have been generated but not yet expanded are found on the open 
list, while those that have already been expanded are found on the closed list. The algorithm 
ranks the nodes in the open list according to their f-score, which is calculated by adding their 
g-score and h-score. The projected cost of travelling from the current node to the destination 

4

E3S Web of Conferences 391, 01140 (2023) https://doi.org/10.1051/e3sconf/202339101140
ICMED-ICMPC 2023



4.5 DLS applications  

DLS is a search algorithm that limits the depth of exploration in a search tree. DLS has some 
applications in different fields summarized from [5], includes the following: 
• Artificial Intelligence: DLS can be used in artificial intelligence for search problems 

where the search space is large, and an exhaustive search is not possible. The algorithm 
can be used to limit the depth of exploration in a search tree, reducing the search space 
and improving the search time. 

• Game Playing: DLS can be used in game playing to limit the search depth while 
evaluating game states. In games such as chess or checkers, it is not possible to search 
the entire game tree, and therefore, depth-limited search can be used to limit the depth 
of exploration and improve the search time. 

• Natural Language Processing: DLS can be used in natural language processing for tasks 
such as parsing and machine translation. The algorithm can be used to limit the depth of 
exploration when searching for the best parse tree or translation, reducing the search 
space and improving the search time. 

• Web Crawling: DLS can be used in web crawling to limit the depth of exploration when 
crawling websites. The algorithm can be used to limit the number of pages crawled, 
improving the crawling speed and reducing the load on the web server.  

• Robotics: DLS can be used in robotics for path planning and obstacle avoidance. The 
algorithm can be used to limit the depth of exploration when searching for the best path, 
reducing the search space and improving the path planning time. 

4.6 Performance Analysis 

In summary, Depth-limited search (DLS) is a useful search algorithm that can be used in 
various fields to limit the depth of exploration in a search tree, improving the search time and 
reducing the search space. Its applications include artificial intelligence, game playing, 
natural language processing, web crawling, and robotics. 

4.7 DLS: A case study 

Figure 2 shows five nodes, namely, A, B, C, D, and E, make up the graph, and a directed path 
leads from A to C, then from C to B. Thirteen nodes, namely, A, B, C, D, E, F, G, H, I, J, K, 
L and M, make up the graph in Figure 3, and a directed path leads from A to E, then from E 
to H, then from H to I, then from I to E, then from E to H, then from H to C, then from C to 
F. Further, twenty six nodes, namely, A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, 
T, U, V, W, X, Y and Z, make up the graph in Figure 4, and a directed path leads from B to 
L, then from L to M, then from M to S, then from S to Z, then from Z to T, then from T to D, 
then from D to Q, then from Q to S, then from S to Z, then from Z to T, then from T to D, 
then from D to Q, then from Q to S, then from S to K, then from K. Red coloured edges 
represents the path from start to goal state. 

4.8 A* search 

A* Search is a well-known search method that directs the search towards the desired state 
using a heuristic function. The closed list and the open list are both kept up to date by the 
algorithm. The nodes that have been generated but not yet expanded are found on the open 
list, while those that have already been expanded are found on the closed list. The algorithm 
ranks the nodes in the open list according to their f-score, which is calculated by adding their 
g-score and h-score. The projected cost of travelling from the current node to the destination 

node is represented by the h-score, while the cost of travelling from the current node to the 
start node is represented by the g-score [6]. 

 

 
Fig. 2. DLS using 5 nodes. 

 
Fig. 3. DLS using 13 nodes. 

5

E3S Web of Conferences 391, 01140 (2023) https://doi.org/10.1051/e3sconf/202339101140
ICMED-ICMPC 2023



 
Fig. 4. DLS using 26 nodes. 

4.9 A* algorithm steps  

This Pseudocode illustrates the steps of A* Algorithm summarized from [7]. 
1. Define a list open, Initially, OPEN consists solely of a single node, the start node x. 
2. If the list is empty, return failure and exit. 
3. Remove node n with the smallest value of f(n) from OPEN and move it to list   CLOSED. 

If node “n” is a goal state, return success and exit. 
4. Expand node “n”. 
5. If any successor to “n” is the goal node, return success and the solution by tracing the 

path from goal node to “x”. Otherwise, go to next step. 
6. For each successor node, apply the evaluation function f to the node. If the node has been 

in either list, add to OPEN 
7. Repeat from step 2 until an exit condition has been satisfied and the program is 

terminated. 

6

E3S Web of Conferences 391, 01140 (2023) https://doi.org/10.1051/e3sconf/202339101140
ICMED-ICMPC 2023



 
Fig. 4. DLS using 26 nodes. 

4.9 A* algorithm steps  

This Pseudocode illustrates the steps of A* Algorithm summarized from [7]. 
1. Define a list open, Initially, OPEN consists solely of a single node, the start node x. 
2. If the list is empty, return failure and exit. 
3. Remove node n with the smallest value of f(n) from OPEN and move it to list   CLOSED. 

If node “n” is a goal state, return success and exit. 
4. Expand node “n”. 
5. If any successor to “n” is the goal node, return success and the solution by tracing the 

path from goal node to “x”. Otherwise, go to next step. 
6. For each successor node, apply the evaluation function f to the node. If the node has been 

in either list, add to OPEN 
7. Repeat from step 2 until an exit condition has been satisfied and the program is 

terminated. 

4.10 Applications of A* search  

A* search is a widely used search algorithm that is used in various domains, including 
robotics, game playing, natural language processing, and transportation. Here are some of 
the applications of A* search depicted from [8]: 
• Robotics: A* search is used in robotics for path planning and obstacle avoidance. The 

algorithm serves in identifying the straightest line that avoids all obstructions between 
two places. Robotic mapping also uses A* search to determine the best course for 
navigating uncharted territory. 

• Game Playing: A* search is used in game playing to find the best move for an agent in a 
game. The algorithm is used to evaluate different game states and select the move that 
maximizes the expected outcome. A* search is commonly used in games such as chess, 
checkers, and other board games. 

• Natural Language Processing: A* search is used in natural language processing to 
perform tasks such as parsing and machine translation. The algorithm is used to find the 
most likely parse tree or translation by evaluating different possibilities and selecting the 
one with the highest probability. 

• Transportation: A* search is used in transportation systems to optimize the routing of 
vehicles. The method is used to determine the fastest route between two sites while 
taking into account the amount of traffic, roadway closures, and any additional variables 
that may prolong the journey. 

• Medical Diagnosis: A* search is used in medical diagnosis to find the most likely 
diagnosis for a patient based on their symptoms and medical history. The algorithm is 
used to evaluate different possible diagnoses and select the one that best matches the 
patient's symptoms and medical history. 

• Web Search: A* search is used in web search engines to rank web pages based on their 
relevance to a search query. The algorithm is used to evaluate the relevance of different 
web pages and rank them based on their relevance score. 

• In summary, A* search is a versatile search algorithm that is widely used in various 
domains to solve complex search problems. Its ability to find the optimal path while 
considering multiple factors makes it an effective tool for solving real-world problems. 

4.11 A* search: A case study 

Figure 5 shows five nodes, namely, A, B, C, D, and E, make up the graph, and a directed path 
leads from A to C, then from C to B. Thirteen nodes, namely, A, B, C, D, E, F, G, H, I, J, K, 
L and M, make up the graph in Figure 6, and a directed path leads from A to J, then from J 
to M, then from M to F. Twenty six nodes, namely, A, B, C, D, E, F, G, H, I, J, K, L, M, N, 
O, P, Q, R, S, T, U, V, W, X, Y and Z, `make up the graph in Figure 7, and a directed path 
leads from B to D, then from D to J, then from J to K. Red coloured edges represents the path 
from start to goal state. 

5 Experimental results and discussions 
The performance comparison of DLS and A* algorithms is presented in the following section. 
Table 1 summarizes the measured parameters to evaluation the DLS and A* algorithms, 
namely, time taken (in microseconds), number of visits to the concern node(s), search cost, 
time complexity and space complexity. 
• Number of nodes: The process of exploring a search space, which is a collection of states 

or nodes connected by transitions or edges, may be thought of as a search algorithm. 

7

E3S Web of Conferences 391, 01140 (2023) https://doi.org/10.1051/e3sconf/202339101140
ICMED-ICMPC 2023



• Number of visits: This term describes the quantity of times a certain state or node inside 
a search algorithm has been traversed during the course of a search. The frequency with 
which various nodes or states are investigated and assessed throughout search is tracked 
by this parameter. 

• Search cost: The term "search cost" often refers to the time or resources needed to run a 
search algorithm in order to discover a solution to a problem. 

• Time complexity: The term "time complexity" describes the amount of processing time 
or resources needed to solve a given issue in relation to the magnitude of the input. 

• Space complexity: The concept of "space complexity" refers to the amount of memory 
or storage required by an algorithm to solve a problem as an estimate of the dimension 
of the input. 

 

 
Fig. 5. A* search using 5 nodes. 

  
Fig. 6. A* using 13 nodes. 

8

E3S Web of Conferences 391, 01140 (2023) https://doi.org/10.1051/e3sconf/202339101140
ICMED-ICMPC 2023



• Number of visits: This term describes the quantity of times a certain state or node inside 
a search algorithm has been traversed during the course of a search. The frequency with 
which various nodes or states are investigated and assessed throughout search is tracked 
by this parameter. 

• Search cost: The term "search cost" often refers to the time or resources needed to run a 
search algorithm in order to discover a solution to a problem. 

• Time complexity: The term "time complexity" describes the amount of processing time 
or resources needed to solve a given issue in relation to the magnitude of the input. 

• Space complexity: The concept of "space complexity" refers to the amount of memory 
or storage required by an algorithm to solve a problem as an estimate of the dimension 
of the input. 

 

 
Fig. 5. A* search using 5 nodes. 

  
Fig. 6. A* using 13 nodes. 

 

 
Fig. 7. A* using 26 nodes. 

The performance comparison of DLS and A* algorithms is presented in the following section. 
Table 1 summarizes the measured parameters to evaluation the DLS and A* algorithms, 
namely, time taken (in microseconds), number of visits to the concern node(s), search cost, 
time complexity and space complexity. 
• Number of nodes: The process of exploring a search space, which is a collection of states 

or nodes connected by transitions or edges, may be thought of as a search algorithm. 
• Number of visits: This term describes the quantity of times a certain state or node inside 

a search algorithm has been traversed during the course of a search. The frequency with 
which various nodes or states are investigated and assessed throughout search is tracked 
by this parameter. 

• Search cost: The term "search cost" often refers to the time or resources needed to run a 
search algorithm in order to discover a solution to a problem. 

• Time complexity: The term "time complexity" describes the amount of processing time 
or resources needed to solve a given issue in relation to the magnitude of the input. 

• Space complexity: The concept of "space complexity" refers to the amount of memory 
or storage required by an algorithm to solve a problem as an estimate of the dimension 
of the input. 

 

9

E3S Web of Conferences 391, 01140 (2023) https://doi.org/10.1051/e3sconf/202339101140
ICMED-ICMPC 2023



Table 1. Comparison of A* and DLS search algorithms 

 
Name of the 
algorithm No. of nodes Time taken (in 

microseconds) 
No. of 
visits 

Search 
cost 

Time 
complexity 

Space 
complexity 

A* 

5 55.70 7 54 

O(bd)  O(bd)  13 63.30 24 64 

26 228.60 42 13 

DLS 

5 20.80 6 54 

 O(bl) O(b*l)  13 47.70 22 317 

26 54.10 22 651 

whereas,  
b = branching factor 
l = maximum length path in the search graph 
d = depth of solution state from start state 

6 Conclusion 
A* search and DLS have been compared in this work, which also looked at their benefits and 
drawbacks. A* search is an educated search algorithm that directs the search to the 
destination node using a heuristic function, whereas DLS is an uninformed search method 
that caps the search depth at a predetermined value. The study paper's trials' findings shown 
in Table 1, revealed that A* search outperformed DLS in terms of both time complexity and 
spatial complexity. The research topic still has a number of areas as future enhancements. 
The performance of these search algorithms in more complicated and dynamic contexts is 
one possible area for development. A* search could also benefit from improvement by 
investigating the usage of various heuristic functions, as the choice of heuristic function can 
have substantial impact on the algorithm's performance. Additionally, other search 
algorithms like iterative deepening search, breadth-first search, and depth-first search could 
be taken into account for further comparison between A* search and DLS. Additionally, the 
research could be expanded by examining how well these algorithms perform when applied 
to various types of issues, including optimisation problems, constraint fulfilment problems, 
and planning challenges. Conclusively, even though the study paper comparing A* search 
with DLS highlighted the advantages and disadvantages of these search algorithms, augment 
development and additional research in this field is foreseen. 

References 
 
1. S. R. a. P. Norvig, “Artificial Intelligence: A Modern Approach, 4th Edition,” Pearson 

Publication. 
2. D. W. Patterson, “Introduction to Artificial Intelligence & Expert Systems,” Prentice-

Hall. 
3. What is depth limited search, https://www.educative.io/answers/what-is-depth-limited-

search 

10

E3S Web of Conferences 391, 01140 (2023) https://doi.org/10.1051/e3sconf/202339101140
ICMED-ICMPC 2023



Table 1. Comparison of A* and DLS search algorithms 

 
Name of the 
algorithm No. of nodes Time taken (in 

microseconds) 
No. of 
visits 

Search 
cost 

Time 
complexity 

Space 
complexity 

A* 

5 55.70 7 54 

O(bd)  O(bd)  13 63.30 24 64 

26 228.60 42 13 

DLS 

5 20.80 6 54 

 O(bl) O(b*l)  13 47.70 22 317 

26 54.10 22 651 

whereas,  
b = branching factor 
l = maximum length path in the search graph 
d = depth of solution state from start state 

6 Conclusion 
A* search and DLS have been compared in this work, which also looked at their benefits and 
drawbacks. A* search is an educated search algorithm that directs the search to the 
destination node using a heuristic function, whereas DLS is an uninformed search method 
that caps the search depth at a predetermined value. The study paper's trials' findings shown 
in Table 1, revealed that A* search outperformed DLS in terms of both time complexity and 
spatial complexity. The research topic still has a number of areas as future enhancements. 
The performance of these search algorithms in more complicated and dynamic contexts is 
one possible area for development. A* search could also benefit from improvement by 
investigating the usage of various heuristic functions, as the choice of heuristic function can 
have substantial impact on the algorithm's performance. Additionally, other search 
algorithms like iterative deepening search, breadth-first search, and depth-first search could 
be taken into account for further comparison between A* search and DLS. Additionally, the 
research could be expanded by examining how well these algorithms perform when applied 
to various types of issues, including optimisation problems, constraint fulfilment problems, 
and planning challenges. Conclusively, even though the study paper comparing A* search 
with DLS highlighted the advantages and disadvantages of these search algorithms, augment 
development and additional research in this field is foreseen. 

References 
 
1. S. R. a. P. Norvig, “Artificial Intelligence: A Modern Approach, 4th Edition,” Pearson 

Publication. 
2. D. W. Patterson, “Introduction to Artificial Intelligence & Expert Systems,” Prentice-

Hall. 
3. What is depth limited search, https://www.educative.io/answers/what-is-depth-limited-

search 

4. Depth Limited Search, https://iq.opengenus.org/depth-limited-search/ 
5. Uninformed Search Algorithms – Javatpoint, https://www.javatpoint.com/ai-

uninformed-search-algorithms 
6. What is Heuristic Search - Techniques & Hill Climbing in AI – DataFlair, https://data-

flair.training/blogs/heuristic-search-ai/ 
7. A* Search Algorithm, https://www.slideshare.net/vikasdhakane/a-search-algorithm 
8. Machine Learning: Algorithms, Real-World Applications and Research Directions, 

https://link.springer. com/article/10.1007/s42979-021-00592-x 

11

E3S Web of Conferences 391, 01140 (2023) https://doi.org/10.1051/e3sconf/202339101140
ICMED-ICMPC 2023


