

Design and Implementation of POSIT Based
Adder and Multiplier in Verilog HDL

Rambabu Sanivarapu*1, Mallikarjuna Rao Y2, Venkataiah C3, Linga Murthy MK4, Laith H.
Alzubaidi5, Vyeshikha6

1,2Department of Electronics & Communication Engineering, Santhiram Engineering College,
Nandyal, Andhra Pradesh, 518501 INDIA

3Department of Electronics & Communication Engineering, Rajeev Gandhi Memorial College of
Engineering and Technology, Nandyal, Andhra Pradesh, 518501 INDIA

4Department of Electronics & Communication Engineering, LakiReddy Bali Reddy College of
Engineering, Mylavaram, Andhra Pradesh, 518501 INDIA
5The Islamic University, Faculty of Engineering, Najaf, Iraq
6 Uttaranchal School of Computing Sciences, Uttaranchal University, Dehradun 248007 INDIA

Abstract. Due to recent developments, the POSIT number system, winch
has been planned as a successor for numbers that are expressed in IEEE
floating-point, which are in the focus of advances in arithmetic. Although
this format claims to deliver more precise outcomes with the same bit
width as ordinary floating point, the duration of the operation fluctuation
during posit field identification poses a hardware design problem. The
POSIT-based MAC Unit is created using Verilog HDL in this study, and
the designed architecture is evaluated for good operation before being
implemented on an FPGA using Xilinx Vivado.

Keywords: POSIT, MAC Unit, and VHDL

I INTRODUCTION
POSIT is a new data type that is intended to replace IEEE Standard 754 floating-point
integers directly [1][2]. POSITs do not necessitate the use of arithmetic of regular intervals
or operands of varying sizes, unlike previous types of of universal number arithmetic. The
following factors like increased scaling factor, increased precision, improved closure,
similar bitwise results among existed platforms, less complicated hardware, and easy
exception handling are just a few of the advantages they offer over floats. Posits does not
overflow or underflow to infinity. In addition, "Not-a-Number" denotes a procedure rather
than a bit pattern [4].

*Corresponding author: ramababu.ece@srecnandyal.edu.in

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons
Attribution License 4.0 (https://creativecommons.org/licenses/by/4.0/).

E3S Web of Conferences 391, 01184 (2023) https://doi.org/10.1051/e3sconf/202339101184
ICMED-ICMPC 2023

1.1 The Uniform Number Format(UNF)

The universal number format (UNF), which is one of the floating-point-like arithmetic
styles, that was gaining traction as a substitute for IEEE 754[17]. This article goes through
the posit number format in great depth. Both real numbers and real number ranges are
expressed using the universal number format.

 The original Type I universal is a superset of floats, just as floats are of integers. When
a computation is unable to deliver a numerically accurate response and ordinary floating-
point arithmetic rounding is required, these can either indicate an exact float or an open
interval between adjacent floats. [5]. For accomplish this, universal numbers incorporate a
"universal bit" once the fraction comes to a close that indicates if the fraction represents an
exact amount or a range, depending on whether the universal bit which is similar to 0 or 1.

Components which are included in IEEE 754 floating-point are like the first field is sign
field and second field is exponent and the last field is fraction bit section which is also
supported by the Type I universal number format. To solve some of the shortcomings of the
previous version, the Type II universal number was suggested, such is the complexity of
hardware design and the fact that some values can be expressed in a variety of ways. IEEE
floats are no longer compatible with this second version [15][16].

S

u

e f es − 1 f − 1

Sign exponent fraction u bit exponent fraction

Fig. 1. Type I u num bit fields

To solve some of the shortcomings of the previous version, the Type II universal number
was suggested, that means with the difficulty of hardware implementation and the fact that
some values can be expressed in a variety of ways. IEEE floats are no longer compatible
with this second version. Type II universal numbers, on the other hand, demonstrate a
simple, mathematical design based on the translation of values onto one real spatial line,
that was indicated by the field R = R. The basic idea is that the position where the signed
(two's complement) numbers turn negative is the same point at which positive real numbers
turn negative, and that point gives the value.

The concept of a Type III universal number is thus on the basis of a genuine projective line,
just as it is for Type II, albeit the this format's developed system would be similar to that of
IEEE 754 floating-point arithmetic based on an actual spatial line[7][8]. The reciprocals are
obtained by relaxing the perfect reflection criterion, which now only applies to integer
powers of 2 and 0. Because all of the integers are also of the form m 2k, where m and k are
integers, there seem to be no empty intervals. A good POSIT is indeed the interval
arithmetic variant of the POSIT. It's made up of two hypotheses of equal size, each
terminating in a universal bit that indicates the limits [4].

2

E3S Web of Conferences 391, 01184 (2023) https://doi.org/10.1051/e3sconf/202339101184
ICMED-ICMPC 2023

1.1 The Uniform Number Format(UNF)

The universal number format (UNF), which is one of the floating-point-like arithmetic
styles, that was gaining traction as a substitute for IEEE 754[17]. This article goes through
the posit number format in great depth. Both real numbers and real number ranges are
expressed using the universal number format.

 The original Type I universal is a superset of floats, just as floats are of integers. When
a computation is unable to deliver a numerically accurate response and ordinary floating-
point arithmetic rounding is required, these can either indicate an exact float or an open
interval between adjacent floats. [5]. For accomplish this, universal numbers incorporate a
"universal bit" once the fraction comes to a close that indicates if the fraction represents an
exact amount or a range, depending on whether the universal bit which is similar to 0 or 1.

Components which are included in IEEE 754 floating-point are like the first field is sign
field and second field is exponent and the last field is fraction bit section which is also
supported by the Type I universal number format. To solve some of the shortcomings of the
previous version, the Type II universal number was suggested, such is the complexity of
hardware design and the fact that some values can be expressed in a variety of ways. IEEE
floats are no longer compatible with this second version [15][16].

S

u

e f es − 1 f − 1

Sign exponent fraction u bit exponent fraction

Fig. 1. Type I u num bit fields

To solve some of the shortcomings of the previous version, the Type II universal number
was suggested, that means with the difficulty of hardware implementation and the fact that
some values can be expressed in a variety of ways. IEEE floats are no longer compatible
with this second version. Type II universal numbers, on the other hand, demonstrate a
simple, mathematical design based on the translation of values onto one real spatial line,
that was indicated by the field R = R. The basic idea is that the position where the signed
(two's complement) numbers turn negative is the same point at which positive real numbers
turn negative, and that point gives the value.

The concept of a Type III universal number is thus on the basis of a genuine projective line,
just as it is for Type II, albeit the this format's developed system would be similar to that of
IEEE 754 floating-point arithmetic based on an actual spatial line[7][8]. The reciprocals are
obtained by relaxing the perfect reflection criterion, which now only applies to integer
powers of 2 and 0. Because all of the integers are also of the form m 2k, where m and k are
integers, there seem to be no empty intervals. A good POSIT is indeed the interval
arithmetic variant of the POSIT. It's made up of two hypotheses of equal size, each
terminating in a universal bit that indicates the limits [4].

2 SYSTEM MODEL

2.1 Unit for MAC

The multiply–accumulate procedure involves computing the product of two integers and
adding the result to an accumulator. While dealing on floating - point, it could be done with
two or just one rounding. When done with a one round, it's termed a fused multiply–add
(FMA) or fused multiply–accumulate.

2.2 POSIT Adder Unit

Modern computers include a specialized MAC that consists of a multiplier, an adder, and
an accumulator register that records the result[10][12]. The register's output is sent back
into those adder's inputs, causing the multiplier's output to be added to the register every
clock cycle. Combinational multipliers need a lot of logic, but they can compute a result
much faster than the shifting and adding method used by older machines. Digital signal
processors were the first modern processors to include MAC units, although the approach is
now widely used in general-purpose processors.

Fig. 2. MAC Unit flow chart.

3

E3S Web of Conferences 391, 01184 (2023) https://doi.org/10.1051/e3sconf/202339101184
ICMED-ICMPC 2023

2.3 POSIT Multiply Unit

Bits distinguish sign bits, regime bits, exponent bits, and mantissa from the two inputs. To
make the original exponent bit, combine the regime bit with the exponent bit [11]. Compare
the freshly created exponent bits of both inputs and add the mantissa bits if they are equal.
If they aren't equal, move one of the mantissa bits to make them equal. We may now add
the adjusted mantissa bits because the modified exponent matches. Normalize the extra
fraction bits if necessary, then recreate the posit format. Perform the 2's complement on the
reconstructed posit format if the sign bit is negative.

Fig. 3. POSIT Adder Unit.

3 Implementation of Hardware

Fig. 4. Implementation of proposed Hardware

4

E3S Web of Conferences 391, 01184 (2023) https://doi.org/10.1051/e3sconf/202339101184
ICMED-ICMPC 2023

2.3 POSIT Multiply Unit

Bits distinguish sign bits, regime bits, exponent bits, and mantissa from the two inputs. To
make the original exponent bit, combine the regime bit with the exponent bit [11]. Compare
the freshly created exponent bits of both inputs and add the mantissa bits if they are equal.
If they aren't equal, move one of the mantissa bits to make them equal. We may now add
the adjusted mantissa bits because the modified exponent matches. Normalize the extra
fraction bits if necessary, then recreate the posit format. Perform the 2's complement on the
reconstructed posit format if the sign bit is negative.

Fig. 3. POSIT Adder Unit.

3 Implementation of Hardware

Fig. 4. Implementation of proposed Hardware

The posit decoder described in this architecture decodes the regime using only a leading
zero detector, although others employ a leading one detector as well. This, combined with
other. For certain adders and multipliers, changes lead to increased performance in term of
area and energy consumption. Posits was designed to be easy to calculate on a hardware
level, utilizing circuitry that was equivalent to modern floating point electronics.The main
distinction between float and posit representations is that the latter includes a time-varying
scaling component – the scale and accessible exponential bits. As a result, there are no
specified fields in the executable format, which would be a circuit design competition.
Here, we show a properly operational posit multiplier operators, as well as how this
module's hardware architecture is analogous to that of floating-point arithmetic. In posit
multiplication, which is virtually equivalent to floating-point multiplication, the scalability
coefficients are applied, and the percentages are multiplied and reduced. When multiplying
propositions, there are little differences due to the varying length of the governing field.
The resultant regime's computation is not straightforward.

4 Discussion and Results

The results of the POSIT Multiplier are discussed in this chapter. The code is written in
Verilog HDL and tested with the Vivado tool for functionality. In addition, the design was
synthesized in order to obtain the report on the schematic and its use.

Fig. 5. Simulation results for POSIT MAC Unit

5

E3S Web of Conferences 391, 01184 (2023) https://doi.org/10.1051/e3sconf/202339101184
ICMED-ICMPC 2023

Fig. 6. Utilisation Report of POSIT MAC Unit

5 Conclusion and Next Steps

The IEEE Standard on Floating-Point Arithmetic is often used to define floating-point
integers for over thirty years. Notwithstanding this, the newly formed posit number system
is seen as a direct rival to the widely accepted IEEE Series of standards. This dissertation
looked at the strengths and vulnerabilities of the two computing forms to determine if the
Type III universal number could be used as a fall substitute for the current IEEE Standard
on Floating-Point Calculation. Furthermore, we provide a few quick notes on future study
and development. The multiplier calculated inside this research will be used to design all
required to form. Keep in mind that the posit demodulator is a module that all posit
operators use. Furthermore, the synthesis findings revealed that the already constructed
components can still be improved. As a consequence, creating a completely operational
Posit Calculation Unit will be a goal in the future. Because there are currently no deep
learning frameworks that support posit arithmetic, future work will include assimilating the
said new layout into libraries like Tens, Flow, or Keras, allowing for testing on bigger
frameworks and sets of data, as well as computing power posits on GPUs, after the first
functional units on posit arithmetic become accessible.

References
1. D. Goldberg, “What every computer scientist should know about floating-point

arithmetic”, ACM Computing Surveys (CSUR), vol. 23, no. 1, pp. 5–48, Mar. 1991.
DOI:10.1145/103162.103163.

2. Karthik Rao, R., Bobba, P.B., Suresh Kumar, T., Kosaraju, S., Feasibility analysis of
different conducting and insulation materials used in laminated busbars, Materials
Today: Proceedings, 2019, 26, pp. 3085–3089.

3. IEEE Computer Society Standards Committee and American National Standards
Institute, “IEEE Standard for Binary Floating-Point Arithmetic”, ANSI/IEEE Std754-
1985. DOI: 10.1109/ieeestd.1985.82928.

6

E3S Web of Conferences 391, 01184 (2023) https://doi.org/10.1051/e3sconf/202339101184
ICMED-ICMPC 2023

Fig. 6. Utilisation Report of POSIT MAC Unit

5 Conclusion and Next Steps

The IEEE Standard on Floating-Point Arithmetic is often used to define floating-point
integers for over thirty years. Notwithstanding this, the newly formed posit number system
is seen as a direct rival to the widely accepted IEEE Series of standards. This dissertation
looked at the strengths and vulnerabilities of the two computing forms to determine if the
Type III universal number could be used as a fall substitute for the current IEEE Standard
on Floating-Point Calculation. Furthermore, we provide a few quick notes on future study
and development. The multiplier calculated inside this research will be used to design all
required to form. Keep in mind that the posit demodulator is a module that all posit
operators use. Furthermore, the synthesis findings revealed that the already constructed
components can still be improved. As a consequence, creating a completely operational
Posit Calculation Unit will be a goal in the future. Because there are currently no deep
learning frameworks that support posit arithmetic, future work will include assimilating the
said new layout into libraries like Tens, Flow, or Keras, allowing for testing on bigger
frameworks and sets of data, as well as computing power posits on GPUs, after the first
functional units on posit arithmetic become accessible.

References
1. D. Goldberg, “What every computer scientist should know about floating-point

arithmetic”, ACM Computing Surveys (CSUR), vol. 23, no. 1, pp. 5–48, Mar. 1991.
DOI:10.1145/103162.103163.

2. Karthik Rao, R., Bobba, P.B., Suresh Kumar, T., Kosaraju, S., Feasibility analysis of
different conducting and insulation materials used in laminated busbars, Materials
Today: Proceedings, 2019, 26, pp. 3085–3089.

3. IEEE Computer Society Standards Committee and American National Standards
Institute, “IEEE Standard for Binary Floating-Point Arithmetic”, ANSI/IEEE Std754-
1985. DOI: 10.1109/ieeestd.1985.82928.

4. “IEEE Standard for Floating-Point Arithmetic”, IEEE Std 754-2008, pp. 1–70, 2008.
DOI: 10.1109/ieeestd.2008.4610935.

5. Tummala, S.K., Indira Priyadarshini, T., Morphological Operations and Histogram
Analysis of SEM Images using Python, Indian Journal of Engineering and Materials
Sciences, 2022, 29(6), pp. 794–798

6. J. L. Gustafson, The End of Error: Unum Computing. CRC Press, Feb. 5, 2015,vol. 24,
ISBN: 9781482239867.

7. W. Kahan and J. D. Darcy, “How Java’s floating-point hurts everyone everywhere”, in
ACM 1998 workshop on Java for High–Performance Network Computing, Stanford
University, 1998, pp. 1–81.

8. Suresh Kumar Tummala, Phaneendra Babu Bobba & Kosaraju Satyanarayana (2022)
SEM & EDAX analysis of super capacitor, Advances in Materials and Processing
Technologies, 8:sup4, 2398-2409,

9. J. L. Gustafson and I. T. Yonemoto, “Beating Floating Point at its Own Game: Posit
Arithmetic”, Supercomputing Frontiers and Innovations, vol. 4, no. 2, pp. 71–86, Jun.
2017. DOI: 10.14529/jsfi170206.

10. Nagarjuna, A., Suresh Kumar, T., Yogeswara Reddy, B., Udaykiran, M., Fifteen level
cascaded H-bridge multilevel inverter fed induction motor, International Journal of
Innovative Technology and Exploring Engineering, 2019, 8(11), pp. 640–645.

11. L. van Dam, “Enabling High Performance Posit Arithmetic Applications Using
Hardware Acceleration”, Master’s thesis, Delft University of Technology, the
Netherlands,Sep. 17, 2018, ISBN: 9789461869579.

12. Satyanarayana, K., Gopal, A.V., Babu, P.B., Design optimisation of machining
parameters for turning titanium alloys with taguchi-grey method, International Journal
of Machining and Machinability of Materials, 2013, 13(2-3), pp. 191–202

13. Davu, S.R., Tejavathu, R. & Tummala, S.K. EDAX analysis of poly crystalline solar
cell with silicon nitride coating. Int J Interact Des Manuf (2022).

14. A. A. D. Barrio, N. Bagherzadeh, and R. Hermida, “Ultra-low-power adder stagedesign
for exascale floating point units”, ACM Trans. Embed. Comput. Syst., vol. 13,no. 3s,
150:1–150:24, Mar. 2014. DOI: 10.1145/2567932.

15. J. L. Gustafson. (Oct. 10, 2017). Posit Arithmetic, [Online]. Available: https
://posithub.org/docs/Posits4.pdf (visited on Mar. 13, 2019).

16. J. L. Gustafson, “A Radical Approach to Computation with Real Numbers”,
Supercomputing Frontiers and Innovations, vol. 3, no. 2, pp. 38–53, Sep. 2016.
DOI:10.14529/jsfi160203.

17. J. Srinivas Rao, Suresh Kumar Tummala, Narasimha Raju Kuthuri, Comparative
investigation of 15 Level and 17 level cascaded h-bridge MLI with cross h-bridge MLI
fed permanent magnet synchronous motor, Indonesian Journal of Electrical Engineering
and Computer Science, 21(2), pp: 723-734, (2020)

18. Posit Working Group. (Jun. 23, 2018). Posit Standard Documentation,
[Online].Available: https://posithub.org/docs/posit_standard.pdf (visited on Apr.
30,2019).

19. Tummala, S.K., Kosaraju, S. & Bobba, P.B. Optimized power generation in solar using
carbon substrate for reduced greenhouse gas effect. Appl Nanosci 12, 1537–1543
(2022).

20. R. Munafo. (2018). Survey of Floating-Point Formats, [Online]. Available:
http://www.mrob.com/pub/math/floatformats.html (visited on Feb. 9, 2019).

21. Y.Mallikarjuna Rao, M.V.Subramanyam and K. Satyaprasad, “QoS based Mobility
management algorithms for Wireless mess networks”, Journal of scientific and
Industrial research, volume. 77, pp. 203-207, 2018.

7

E3S Web of Conferences 391, 01184 (2023) https://doi.org/10.1051/e3sconf/202339101184
ICMED-ICMPC 2023

22. Y.Mallikarjuna Rao, M.V.Subramanyam and K. Satyaprasad, “Cluster based Mobility
management algorithms for Wireless mesh networks”, International Journal of
Communication systems (Wiley), Vol. 31, no.11, pp.1-14, 2018.

23. Y.Mallikarjuna Rao, M.V.Subramanyam and K. Satyaprasad, “Cluster based hybrid
routing protocol for Wireless mesh networks”, Wireless personal communications – An
international journal (Springer), Vol. 103, no.4, pp. 3009-3023, 2018.

8

E3S Web of Conferences 391, 01184 (2023) https://doi.org/10.1051/e3sconf/202339101184
ICMED-ICMPC 2023

