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Abstract. In linear programming tasks, the optimal solution can remain the 
same even with a significant deviation of the initial data. Thus, when 
studying various problems in economic and mathematical analysis, the 
question of the optimal solution stability often arises. The problem of finding 
the optimal schedule for processing perishable products is solved below. For 
example, we could refer to sugar beet, an important strategic product that 
degrades during storage, losing sucrose over time according to some law, 
depending on time and (or) variety. Other things being equal, with an 
increase in incoming sucrose, the yield of the final product - sugar, also 
increases, therefore, by maximizing incoming sucrose, it is possible to 
significantly increase the production profitability. In practice, equipment 
often breaks down, therefore, the processing of raw materials stops for a 
while, but not its degradation. In this regard, the optimal schedule after the 
production resumption may change, or it may remain the same. Definitions 
of the optimal schedule stability are given. It is proved that the optimal 
schedules for the main special cases are absolutely stable. Examples of 
conditional stability and local stability for a period are given, as well as a 
numerical experiment showing averaged absolute and relative losses for 
various parameters of raw materials batches and various periods of 
production stoppage. 

1 Introduction 
The sustainability concept finds its application and interpretation in many scientific fields, 
for example, in mathematics, physics, biology, architecture, agriculture, and many others. In 
technology, stability is the ability of a system to return to its original state after external 
effects and continue to work without changing functional characteristics [1]. In this article, 
the concept of optimal schedule stability is introduced and analyzed, that is, the preservation 
of the optimal schedule after an external negative impact: equipment breakdowns, power 
outages, etc. The production schedule is the most important part of the operational and 
strategic planning system for the functioning of an industrial enterprise, since it affects almost 
all aspects of its activities. At the same time, a scientifically based optimal production 
schedule provides a significant increase in enterprise efficiency [2].  
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Unlike "continuous" mathematics, where a small change in a parameter usually entails a 
change in the optimal solution, in discrete optimization, even significant changes in the 
objective function, constraint parameters, etc., can leave the optimal solution or optimal order 
unchanged. Therefore, a number of articles in this area are devoted to the stability of optimal 
control or optimal control sensitivity with respect to changes in parameters, especially when 
describing economic models related to the agro-industrial complex, where they lead to some 
optimization problems of linear programming [3-5]. 

A number of recently studied problems in which the stability of optimal solutions is 
considered are presented in [6-9]. Sensitivity in optimization is the subject of a monograph 
[10], the author of which believes that the concept of "sensitivity" is related, but a deeper 
concept than the concept of "stability", since it can be interpreted as quantitative stability. 

The interval assignment problem is considered in [11, 12]. There in, the components of 
the cost matrix are the acceptable segments to which the corresponding parameters belong, 
and the question of optimal control stability is also raised. Various types of stability in linear 
programming are described in [13].  

The handbook [14] states that "... the economic and mathematical analysis of the solution 
for optimization problems consists primarily in identifying the conditions under which the 
obtained solution of the problem is stable, i.e. the found plan remains optimal with relatively 
small changes in the initial conditions. For this purpose, a number of more or less similar 
variants of the task are calculated and compared...". 
The limits of parameter variation of the objective function or by the parameters of one or 
more constraints so that the optimal schedule remains the same are discussed in the works of 
specialists on this topic. The problem obtained in this paper belongs to the class of discrete 
optimization problems and is a special case of the well-known "assignment problem". To 
solve it, either the Hungarian algorithm is used, or similar ones, for example, the Mack’s 
algorithm [15], [16], or the auction algorithm [17], it is also possible to reduce the assignment 
problem to the minimum-cost flow problem [18]. In [19-22], a mathematical model for 
constructing an optimal processing schedule for 𝒏𝒏  batches of perishable raw materials was 
set and studied. In these works, sugar beet is meant as a raw material, which is harvested 
during the ripening period and stored at beet pile fields during the season to ensure further 
continuous production process. A useful ingredient is sugar, during storage the sugar content 
of beets decreases [23]. In addition to the optimal schedule, these works touched on the topic 
of a quasi-optimal schedule, which is obtained from the optimal one with some variation in 
the parameters of sugar content and batch degradation. In this article, the mathematical model 
of product processing is extended. It is assumed that equipment may break down in 
production and a certain period of time will be spent on its repair. During the repair period, 
the proportion of the useful ingredient, and therefore the optimal schedule may change. 
Especially interesting are the cases when the optimal schedule after the resumption of work 
remains the same or, at least, in the optimal schedule, the batch that goes for processing 
immediately after the production shutdown will not change. The article will present various 
definitions of the optimal schedule stability and examples of their existence. The proof of the 
absolute stability of optimal schedules is also carried out for two main special cases, when 
the degradation coefficients of batches depend on one argument only out of two. A 
computational experiment has been set up that gives an answer to the question of the strategy 
quantitative loss, according to which, after the shutdown, the production schedule (optimal 
before the shutdown) remains unchanged. 
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2 Task statement 

2.1 Mathematical model of processing  

Similarly to the works [19-22], we describe a mathematical model of sugar beet processing. 
Let there be 𝑛𝑛 lots of equal mass, numbered from 1 to 𝑛𝑛. The mass of one batch is the mass 
that the production facilities of the enterprise can process in 1 stage (period) – a certain 
period of time (for example, in one day or one week). Without limiting generality, we can 
assume that 𝑀𝑀 = 1. Different batches differ in production value, which corresponds to the 
percentage of useful ingredient content in the corresponding batch. We denote 𝑎𝑎𝑖𝑖 , 𝑖𝑖 = 1,𝑛𝑛 – 
production value of the 𝑖𝑖 batch at the beginning of the first processing period. To process 𝑛𝑛 
batches, it is necessary to have 𝑛𝑛 stages, we number them from 1 to 𝑛𝑛. We assume that 
during storage at the 𝑗𝑗 processing stage, the 𝑖𝑖 batch loses some of its production value (for 
example, beetroot reduces its sugar content). We denote 𝑏𝑏𝑖𝑖𝑖𝑖  – degradation coefficient, which 
determines the decrease in the share of the useful ingredient of the 𝑖𝑖 batch at the 𝑗𝑗 stage, 𝑖𝑖 =
1,𝑛𝑛, 𝑗𝑗 = 1,𝑛𝑛 − 1, during one stage of processing of this batch, its production value does not 
change. We build a matrix 𝑃𝑃 of the order 𝑛𝑛 × 𝑛𝑛 with components 𝑝𝑝𝑖𝑖𝑖𝑖 , where 𝑝𝑝𝑖𝑖𝑖𝑖  is the 
production value of the 𝑖𝑖 batch before the 𝑗𝑗 stage: 

ii ap =1 ,      𝑝𝑝𝑖𝑖𝑖𝑖 = 𝑎𝑎𝑖𝑖𝑏𝑏𝑖𝑖1𝑏𝑏𝑖𝑖2 … 𝑏𝑏𝑖𝑖𝑖𝑖−1.     (1) 

Let the order of processing batches be given by a permutation 𝜎𝜎, where 𝜎𝜎 =

�
1 2 … 𝑗𝑗 … 𝑛𝑛 − 1 𝑛𝑛

𝜎𝜎(1) 𝜎𝜎(2) … 𝜎𝜎(𝑗𝑗) … 𝜎𝜎(𝑛𝑛 − 1) 𝜎𝜎(𝑛𝑛)� is some permutation of natural numbers 

from 1 to 𝑛𝑛, then the objective function has the form: 

𝑆𝑆 = 𝑝𝑝𝜎𝜎(1)1 + 𝑝𝑝𝜎𝜎(2)2 + 𝑝𝑝𝜎𝜎(3)3 + ⋯+ 𝑝𝑝𝜎𝜎(𝑛𝑛)𝑛𝑛.    (2) 

It is clear that if the permutation 𝜎𝜎 sets the order of the batches, which provides for the 
function 𝑆𝑆 the maximum value 𝑆𝑆∗, and 𝑆𝑆𝑘𝑘→𝑚𝑚 is the value of the objective function (2) when 
rearranging the places in the optimal schedule of the 𝑘𝑘 and 𝑚𝑚 batches, then this means that 
the permutation 𝜎𝜎 sets the optimal schedule and the inequality is satisfied: 

𝑆𝑆∗ − 𝑆𝑆𝑘𝑘→𝑚𝑚 ≥ 0.      (3) 

Such inequalities resulting from the permutation of some two lines in the optimal 
schedule, we call the necessary optimality conditions.  

The objective function (2) according to (1) can be rewritten in the equivalent form: 

𝑆𝑆 = 𝑎𝑎𝜎𝜎(1) + 𝑎𝑎𝜎𝜎(2)𝑏𝑏𝜎𝜎(2)1 + 𝑎𝑎𝜎𝜎(3)𝑏𝑏𝜎𝜎(3)1𝑏𝑏𝜎𝜎(3)2 + ⋯+ 𝑎𝑎𝜎𝜎(𝑛𝑛)𝑏𝑏𝜎𝜎(𝑛𝑛)1𝑏𝑏𝜎𝜎(𝑛𝑛)2 … 𝑏𝑏𝜎𝜎(𝑛𝑛)𝑛𝑛−1.  (4) 

The inequality (3) according to (1) can be rewritten in the equivalent form: 

𝑎𝑎𝜎𝜎(𝑘𝑘)𝑏𝑏𝜎𝜎(𝑘𝑘)1 ⋅ … ⋅ 𝑏𝑏𝜎𝜎(𝑘𝑘)𝑘𝑘−1 �1 −�𝑏𝑏𝜎𝜎(𝑘𝑘)𝑖𝑖

𝑚𝑚−1

𝑖𝑖=𝑘𝑘

� ≥ 

≥ 𝑎𝑎𝜎𝜎(𝑚𝑚)𝑏𝑏𝜎𝜎(𝑚𝑚)1 ⋅ … ⋅ 𝑏𝑏𝜎𝜎(𝑚𝑚)𝑘𝑘−1�1 −∏ 𝑏𝑏𝜎𝜎(𝑚𝑚)𝑖𝑖
𝑚𝑚−1
𝑖𝑖=𝑘𝑘 �.   (5) 

The task of plotting an optimal processing schedule in general consists in choosing such 
a sequence of processing of raw materials, given by a permutation 𝜎𝜎 from 1 to 𝑛𝑛, for which 
the value 𝑆𝑆 will be maximum. We assume that the final product output after the completion 
of all stages will be proportional to the value of the objective function – the proportion of 
incoming sucrose, therefore it is necessary to maximize the objective function (1) or the 
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equivalent objective function (4). In total, there are 𝑛𝑛! various permutations (different 
processing schedules) of 𝑛𝑛 sugar beet batches, that is, when solving the problem by the bruce 
force method, it is necessary to calculate and compare the 𝑛𝑛! values of the objective function. 
Nevertheless, there are other, more effective solution methods. 

The task of maximizing the function 𝑆𝑆 in the general case can be reduced to the well-
known "assignment problem", for the solution of which an algorithm has been built, called 
the "Hungarian algorithm" with time complexity 𝛰𝛰(𝑛𝑛4). This algorithm can find both the 
maximum and minimum of the objective function, as well as the corresponding permutations 
of the batches – the corresponding processing orders of the batches. Nevertheless, the 
Hungarian algorithm and its analogues can be applied only if the matrix 𝑃𝑃 is fully known in 
advance (before the start of processing the first batch) or all the details of the process of 
production value loss by all batches of raw materials during storage are known, that is, all 
𝑎𝑎𝑖𝑖 , 𝑖𝑖 = 1,𝑛𝑛, and 𝑏𝑏𝑖𝑖𝑖𝑖 , 𝑖𝑖 = 1,𝑛𝑛, 𝑗𝑗 = 1,𝑛𝑛 − 1, are known that it is practically possible to 
implement only empirically. Thus, in practice, it is often more justified for optimization 
tasks to use understandable and reasonable quasi-optimal solutions based on some estimates 
of the degradation of raw materials batches. One of the ways to solve the problem in practice 
is to present the problem in the form of the interval assignment problem. A different 
approach has been used in a number of studies [19-22] devoted to the issues of drawing up 
optimal and quasi-optimal processing schedules. 

 2.2 Optimal schedule stability 

The mathematical model described above does not consider the case of a plant shutdown due 
to a breakdown. In real conditions, the production line breakdown can occur at any time and 
lasts for several periods. We will assume that during the entire processing, the breakdown 
was once and lasted for one period. To consider this, it is necessary to expand the 
mathematical model. Suppose that during the 𝐽𝐽 period, 𝐽𝐽 = 2,𝑛𝑛 − 1, production was idle, but 
starting from the (𝐽𝐽 + 1) period, it continued to work. For model correctness, it is necessary 
to determine the degradation coefficients 𝑏𝑏𝑖𝑖𝑛𝑛 , 𝑖𝑖 = 1,𝑛𝑛, during the 𝑛𝑛 period and 𝑝𝑝𝑖𝑖𝑛𝑛+1, since 
the processing now lasts (𝑛𝑛 + 1) period. We call the optimal processing schedule 
conditionally stable in the period 𝐽𝐽, if the optimal schedule remains optimal considering the 
new operating mode up to (𝑛𝑛 + 1) period inclusively and the new degradation coefficients 
𝑏𝑏𝑖𝑖𝑛𝑛 , 𝑖𝑖 = 1,𝑛𝑛, , otherwise we consider it unstable for the period 𝐽𝐽.  

In other words, let the permutation 𝜎𝜎 set the optimal schedule (batch processing order), 
which does not consider the production shutdown, the new optimal processing schedule is 
set by the permutation 𝜎𝜎�, then the permutations are identical, that is, if 𝜎𝜎�(𝑖𝑖) = 𝜎𝜎(𝑖𝑖), 𝑖𝑖 = 1,𝑛𝑛, 
then the optimal schedule remains the same.  

Naturally, it is impossible to change the optimal processing schedule from the 1 to the 
(𝐽𝐽 − 1) time period, the time has already passed and processing during these periods has 
already been carried out (initially it is not known when the breakdown will happen). 

If the stability condition is met for any acceptable 𝐽𝐽, then the optimal schedule is 
absolutely stable. If after the shutdown and resumption of work, according to the new optimal 
schedule, the same batch that would have been processed during the 𝐽𝐽 period under the old 
optimal schedule will be processed, then the optimal schedule is locally stable for the 𝐽𝐽 
period. It is not difficult to see that from absolute stability conditional stability for the period 
𝐽𝐽 follows, as well as from conditional stability for the period 𝐽𝐽 local stability for the period 𝐽𝐽 
follows. Examples of the existence of all declared types of stability of the optimal schedule 
will be shown below. 
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3 Main results  

3.1 Changing the objective function after shutdown  

Let there be a production stoppage in the 𝐽𝐽 period, batches with numbers 1 − (𝐽𝐽 − 1) have 
been processed before it. In fact, after the resumption of production, the task of finding the 
optimal schedule is reduced to a similar one, but for the remaining 𝑛𝑛 − 𝐽𝐽 + 1 batches with 
"initial" sugar content: 𝑝𝑝(𝐽𝐽+𝑚𝑚)𝐽𝐽, 𝑚𝑚 = 0, (𝑛𝑛 − 𝐽𝐽). 

We will number the batches in the order of processing. Considering the shutdown of 
production during the period 𝐽𝐽, the objective function (4) takes the form �̃�𝑆:  

�̃�𝑆 = 𝑎𝑎1 + 𝑎𝑎2𝑏𝑏21 + ⋯+ 𝑎𝑎𝐽𝐽−1𝑏𝑏𝐽𝐽−1 1 ∙ … ∙ 𝑏𝑏𝐽𝐽−1 𝐽𝐽−2 + 𝑎𝑎𝐽𝐽𝑏𝑏𝐽𝐽1 … 𝑏𝑏𝐽𝐽𝐽𝐽 + ⋯+ 𝑎𝑎𝑛𝑛𝑏𝑏𝑛𝑛1 ∙ … ∙ 𝑏𝑏𝑛𝑛𝑛𝑛.  (6) 

Denote 𝐵𝐵𝑖𝑖𝑖𝑖 = 𝑏𝑏𝑖𝑖1𝑏𝑏𝑖𝑖2 … 𝑏𝑏𝑖𝑖𝑖𝑖 , 𝑖𝑖 = 1,𝑛𝑛, 𝑗𝑗 = 1,𝑛𝑛, then as 𝑝𝑝𝑖𝑖𝑖𝑖 = 𝑎𝑎𝑖𝑖𝐵𝐵𝑖𝑖𝑖𝑖−1, and expressions (4), 
(6) will be rewritten as 

𝑆𝑆 = 𝑎𝑎1 + 𝑎𝑎21𝐵𝐵21 + ⋯+ 𝑎𝑎𝐽𝐽−1𝐵𝐵𝐽𝐽−1𝐽𝐽−2 + 𝑎𝑎𝐽𝐽𝐵𝐵𝐽𝐽𝐽𝐽−1 + ⋯+ 𝑎𝑎𝑛𝑛𝐵𝐵𝑛𝑛𝑛𝑛−1,   (7) 

�̃�𝑆 = 𝑎𝑎1 + 𝑎𝑎21𝐵𝐵21 + ⋯+ 𝑎𝑎𝐽𝐽−1𝐵𝐵𝐽𝐽−1𝐽𝐽−2 + 𝑎𝑎𝐽𝐽𝐵𝐵𝐽𝐽𝐽𝐽 + ⋯+ 𝑎𝑎𝑛𝑛𝐵𝐵𝑛𝑛𝑛𝑛   (8) 

accordingly. Denote �̃�𝑆∗ – the optimal (maximum) value of the objective function (8), 
considering that shutdown occurred during the 𝐽𝐽 period. 

For clarity, we will first show examples of absolute stability for two important special 
cases. The first case is when the degradation coefficients do not depend on the batch number 
(grade), but depend only on the period (time), the second is when the degradation coefficients 
do not depend on the time (period), but depend only on the batch number (grade).  

3.2 The first case of the absolutely stable optimal schedule  

In the future, we will need a permutation inequality [24].  
Permutation inequality.  
Let 𝑢𝑢 = (𝑢𝑢1,𝑢𝑢2, … ,𝑢𝑢𝑛𝑛) and 𝑤𝑤 = (𝑤𝑤1,𝑤𝑤2, … ,𝑤𝑤𝑛𝑛) be two finite sequences of real numbers 

that satisfy the following conditions: 𝑢𝑢1 ≥ 𝑢𝑢2 ≥ ⋯ ≥ 𝑢𝑢𝑛𝑛, 𝑤𝑤1 ≥ 𝑤𝑤2 ≥ ⋯ ≥ 𝑤𝑤𝑛𝑛, then the 
inequalities are valid 

𝑢𝑢1𝑤𝑤𝑛𝑛 + 𝑢𝑢2𝑤𝑤𝑛𝑛−1 + ⋯+ 𝑢𝑢𝑛𝑛𝑤𝑤1 ≤ 𝑢𝑢1𝑤𝑤𝜎𝜎(1) + 𝑢𝑢2𝑤𝑤𝜎𝜎(2) + 
+⋯+ 𝑢𝑢𝑛𝑛𝑤𝑤𝜎𝜎(𝑛𝑛) ≤ 𝑢𝑢1𝑤𝑤1 + 𝑢𝑢2𝑤𝑤2 + ⋯+ 𝑢𝑢𝑛𝑛𝑤𝑤𝑛𝑛, 

here 𝜎𝜎 – some arbitrary permutation of natural numbers from 1 to 𝑛𝑛.  
One of the important special cases: all batches degrade in the same way, for example, 

because of the weather, that is, conditions are imposed on the parameters 𝑏𝑏𝑖𝑖𝑖𝑖:  

𝑏𝑏𝑖𝑖𝑖𝑖 = �̄�𝑏𝑖𝑖 ,    𝑖𝑖 = 1,𝑛𝑛,      𝑗𝑗 = 1,𝑛𝑛,            (9) 

which means the degradation coefficients do not depend on the batch, but depend only on the 
processing period (time). We formulate the statement in the form of a theorem.  

Theorem 1. Let the equalities (9) be true, then the optimal schedule for this case is 
absolutely stable. 

Proof. Without loss generality, assume that all 𝑎𝑎𝑖𝑖 , 𝑖𝑖 = 1,𝑛𝑛 are different. Denote 𝐵𝐵𝑖𝑖 =
∏ �̄�𝑏𝑘𝑘,𝑖𝑖
𝑘𝑘=1  𝑗𝑗 = 1,𝑛𝑛. It is clear that the following two chains of inequalities are true: 

1 = 𝐵𝐵0 > 𝐵𝐵1 > ⋯ > 𝐵𝐵𝑛𝑛−1                 (10) 
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and 

1 = 𝐵𝐵0 > 𝐵𝐵1 > ⋯ > 𝐵𝐵𝑖𝑖−2 > 𝐵𝐵𝑖𝑖 > ⋯ > 𝐵𝐵𝑛𝑛 .       (11) 

Variables 𝐵𝐵𝑖𝑖 , 𝑗𝑗 = 1,𝑛𝑛, and chains of inequalities (10), (11) do not depend on batch 
numbers and on the order of their processing.  

The objective function (7) will be rewritten as  

𝑆𝑆 = 𝑎𝑎1 + 𝑎𝑎2𝐵𝐵1 + ⋯+ 𝑎𝑎𝐽𝐽−1𝐵𝐵𝐽𝐽−2 + 𝑎𝑎𝐽𝐽𝐵𝐵𝐽𝐽−1 + ⋯+ 𝑎𝑎𝑛𝑛𝐵𝐵𝑛𝑛−1.    (12) 

The objective function (8) with the same schedule after stopping takes the form 

�̃�𝑆 = ∑ 𝑎𝑎𝑖𝑖𝐵𝐵𝑖𝑖−1
𝐽𝐽−1
𝑖𝑖=1 + ∑ 𝑎𝑎𝑖𝑖𝐵𝐵𝑖𝑖𝑛𝑛

𝑖𝑖=𝐽𝐽 .             (13) 

Let 𝜂𝜂 be a permutation of numbers from 1 to 𝑛𝑛, for which inequalities are satisfied 

   𝑎𝑎𝜂𝜂(1) > 𝑎𝑎𝜂𝜂(2) > ⋯ > 𝑎𝑎𝜂𝜂(𝑛𝑛).              (14) 

It follows from the permutation inequality that the objective function 𝑆𝑆 (see (12)) is 
maximal if it consists of the sum of pairwise products of two lines (10) and (14) and has the 
form:  

𝑆𝑆∗ = ∑ 𝑎𝑎𝜂𝜂(𝑖𝑖)𝐵𝐵𝑖𝑖−1𝑛𝑛
𝑖𝑖=1 . 

The schedule given by the permutation 𝜂𝜂 is optimal.  
Similarly, the objective function (13) takes the maximum value if it consists of the sum 

of the pairwise products of two lines (11) and (14),  

( ) ( ) ( ) ++++= −− 21121
*~

JJ BaBaaS ηηη  𝑎𝑎𝜂𝜂(𝐽𝐽)𝐵𝐵𝐽𝐽 + ⋯+ 𝑎𝑎𝜂𝜂(𝑛𝑛)𝐵𝐵𝑛𝑛 , 

that is, when rearranging 𝜂𝜂. Therefore, the permutation will 𝜂𝜂 remain the optimal schedule 
even after work is stopped, which means that when conditions (9) are met, the optimal 
schedule is absolutely stable. 

3.3 The second case of the absolutely stable optimal schedule 

We consider another important special case when the coefficients 𝑏𝑏𝑖𝑖𝑖𝑖  depend only on the raw 
material batch number, that is  

𝑏𝑏𝑖𝑖𝑖𝑖 = 𝑏𝑏𝑖𝑖 , 𝑖𝑖 = 1,𝑛𝑛, 𝑗𝑗 = 1,𝑛𝑛.                (15) 

Without limiting generality, assume that all 𝑏𝑏𝑖𝑖 are different. Denote  

𝜒𝜒0𝑛𝑛 = �𝑛𝑛−2
𝑛𝑛

;    𝜒𝜒𝑛𝑛 = 𝑛𝑛−1
𝑛𝑛

,   𝑛𝑛 ∈ 𝑁𝑁. 

It is not difficult to verify that 𝜒𝜒𝑛𝑛−1 < 𝜒𝜒0𝑛𝑛 < 𝜒𝜒𝑛𝑛. 
Theorem 2. Let the 𝑎𝑎𝑖𝑖 = 𝑎𝑎, 𝑖𝑖 = 1,𝑛𝑛. Equalities be true (15). We number the batches in 

ascending order 𝑏𝑏𝑖𝑖. Suppose there is limitation  

1
,1

min −
=

≥ ni
ni

b χ ,                              (16) 

and also one of two limitations:  
1)                   𝑏𝑏𝑛𝑛−1 ≥ 𝜒𝜒𝑛𝑛,                 (17) 

then the optimal schedule is absolutely stable; 

2)     𝜒𝜒0𝑛𝑛 ≤ 𝑏𝑏𝑛𝑛−2 < 𝑏𝑏𝑛𝑛−1 < 𝑏𝑏𝑛𝑛 ≤ 𝜒𝜒𝑛𝑛,    (18) 
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then the optimal schedule is not stable, but there will be local stability at 𝐽𝐽 = 2,𝑛𝑛 − 2.  
Proof. The paper [19] considers the case described in the theorem 2 without limitations 

(17) and (18) on the degradation coefficient 𝑏𝑏𝑛𝑛. It proves that the maximum value of the 
objective function for 𝑛𝑛 batches can be obtained if batches of raw materials are processed in 
ascending order of coefficients 𝑏𝑏𝑛𝑛. The batch numbering accepted in the theorem is the 
optimal schedule for the case of 𝑛𝑛 batches and 𝑛𝑛 processing periods. The function 
(2) considering will be (15) written as 

𝑆𝑆∗ = 𝑎𝑎 + 𝑎𝑎𝑏𝑏2 + 𝑎𝑎𝑏𝑏32 + ⋯+ 𝑎𝑎𝑏𝑏𝑛𝑛𝑛𝑛−1. 
The objective function (8), considering the shutdown and reaching the maximum will be 

rewritten as follows:  

�̃�𝑆∗ = ∑ 𝑎𝑎𝑏𝑏𝛾𝛾(𝑖𝑖)
𝑖𝑖−1 + ∑ 𝑎𝑎𝑏𝑏𝛾𝛾(𝑖𝑖)

𝑖𝑖𝑛𝑛
𝑖𝑖=𝐽𝐽

𝐽𝐽−1
𝑖𝑖=1 ,           (19)  

where 𝛾𝛾 is the permutation of the optimal schedule after the shutdown.  
We consider the processing order, which differs from the optimal one by rearranging 

(𝑘𝑘 −  1) and 𝑘𝑘 batches of raw materials, where 𝑘𝑘 −  1 ≥ 𝐽𝐽, , that is, both batches are 
processed after shutdown. In this case, the necessary optimality condition will be met for the 
objective function (19), inequality (5) will be rewritten as 

�̃�𝑆∗ − �̃�𝑆(𝑘𝑘−1)→𝑘𝑘 = �𝑎𝑎𝑏𝑏𝛾𝛾(𝑖𝑖)
𝑖𝑖−1 + 𝑎𝑎𝑏𝑏𝛾𝛾(𝐽𝐽)

𝐽𝐽 … + 𝑎𝑎
𝐽𝐽−1

𝑖𝑖=1

𝑏𝑏𝛾𝛾(𝑘𝑘−1)
𝑘𝑘−1 + 

+𝑎𝑎𝑏𝑏𝛾𝛾(𝑘𝑘)
𝑘𝑘 + ⋯+ 𝑎𝑎𝑏𝑏𝛾𝛾(𝑛𝑛)

𝑛𝑛 −�𝑎𝑎𝛾𝛾(𝑖𝑖)𝑏𝑏𝛾𝛾(𝑖𝑖)
𝑖𝑖−1

𝐽𝐽−1

𝑖𝑖=1

− 𝑎𝑎𝑏𝑏𝛾𝛾(𝐽𝐽)
𝐽𝐽 − ⋯− 𝑎𝑎𝑏𝑏𝛾𝛾(𝑘𝑘)

𝑘𝑘−1 − 

−𝑎𝑎𝑏𝑏𝛾𝛾(𝑘𝑘−1)
𝑘𝑘 − ⋯− 𝑎𝑎𝑏𝑏𝛾𝛾(𝑛𝑛)

𝑛𝑛 ≥ 0, 
from which the equivalent inequalities follow 

𝑏𝑏𝛾𝛾(𝑘𝑘−1)
𝑘𝑘−1 + 𝑏𝑏𝛾𝛾(𝑘𝑘)

𝑘𝑘 ≥ 𝑏𝑏𝛾𝛾(𝑘𝑘)
𝑘𝑘−1 + 𝑏𝑏𝛾𝛾(𝑘𝑘−1)

𝑘𝑘 ⇔ 

⇔ 𝑓𝑓(𝑏𝑏𝛾𝛾(𝑘𝑘−1)) ≥ 𝑓𝑓(𝑏𝑏𝛾𝛾(𝑘𝑘)),     (20) 

where the function 𝑓𝑓(𝑥𝑥) has the form 𝑓𝑓(𝑥𝑥) = 𝑥𝑥𝑘𝑘−1 − 𝑥𝑥𝑘𝑘, then 𝑓𝑓′(𝑥𝑥) = (𝑘𝑘 − 1)𝑥𝑥𝑘𝑘−2 −
𝑘𝑘𝑥𝑥𝑘𝑘−1. It turns to zero when 𝑥𝑥∗ = 𝜒𝜒𝑘𝑘 ≤ 𝜒𝜒𝑛𝑛 . 

For both clauses of the theorem 2, when 𝑘𝑘 = 3,𝑛𝑛 − 1, 𝑘𝑘 ≥ 𝐽𝐽 + 1 (see(16)), on the 
interval 𝑥𝑥 ∈ (𝑥𝑥∗, 1) the derivative 𝑓𝑓 ′(𝑥𝑥) is negative, hence the function 𝑓𝑓(𝑥𝑥) monotonically 
decreases; a smaller value of the function corresponds to a larger value of the argument. It 
follows from the inequality (20), that 𝑏𝑏𝛾𝛾(𝑘𝑘−1) ≤ 𝑏𝑏𝛾𝛾(𝑘𝑘) for 𝑘𝑘 = 𝐽𝐽 + 1,𝑛𝑛 − 1. Therefore, a 
chain of inequalities is valid for the optimal schedule after production stops. 

𝑏𝑏𝛾𝛾(𝑘𝑘−1) ≤ 𝑏𝑏𝛾𝛾(𝑘𝑘) < ⋯ < 𝑏𝑏𝛾𝛾(𝑛𝑛−1). 

What inequality should there be between the parameters 𝑏𝑏𝛾𝛾(𝑛𝑛−1) and 𝑏𝑏𝛾𝛾(𝑛𝑛)?  
For the clause 1 of the theorem 2, reasoning similarly, we get that 𝑏𝑏𝛾𝛾(𝑛𝑛−1) ≤ 𝑏𝑏𝛾𝛾(𝑛𝑛), which 

means also 𝛾𝛾(𝑖𝑖) = 𝑖𝑖,  𝑖𝑖 = 1,𝑛𝑛 , that is, the initial optimal schedule is absolutely stable. 
Next we consider the conditions of clause 2. For it, both parameters 𝑏𝑏𝛾𝛾(𝑛𝑛−1) and 𝑏𝑏𝛾𝛾(𝑛𝑛) 

belong to a half-interval (𝜒𝜒𝑛𝑛−1,𝜒𝜒𝑛𝑛], the derivative 𝑓𝑓 ′(𝑥𝑥) is positive on it, and the function 
𝑓𝑓(𝑥𝑥) increases monotonically; a larger value of the function corresponds to a larger value of 
the argument, and inequality 𝑏𝑏𝛾𝛾(𝑛𝑛−1) ≥ 𝑏𝑏𝛾𝛾(𝑛𝑛) follows from inequality (20), that is, in the new 
optimal schedule, the equalities 𝛾𝛾(𝑛𝑛 − 1) = 𝑛𝑛 − 1 and 𝛾𝛾(𝑛𝑛) = 𝑛𝑛 are not satisfied 
simultaneously, therefore the initial optimal schedule is unstable for any acceptable 𝐽𝐽.  

We will consider the processing order, which differs from the optimal schedule given by 
the 𝛾𝛾, permutation of the (𝑛𝑛 − 2) and 𝑛𝑛 batches of raw materials. 𝐽𝐽 ≤ 𝑛𝑛 − 2 (that is, both 
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batches are processed after the shutdown). An inequality analog (5) will be performed for the 
objective function: 

0 ≤ �̃�𝑆∗ − �̃�𝑆𝛾𝛾(𝑛𝑛−2)→𝛾𝛾(𝑛𝑛)
∗ = 

= 𝑎𝑎 + ⋯+ 𝑎𝑎𝑏𝑏𝛾𝛾(𝑛𝑛−3)
𝑛𝑛−3 + 𝑎𝑎𝑏𝑏𝛾𝛾(𝑛𝑛−2)

𝑛𝑛−2 + 𝑏𝑏𝛾𝛾(𝑛𝑛−1)
𝑛𝑛−1 + 𝑏𝑏𝛾𝛾(𝑛𝑛)

𝑛𝑛 ≥ 
≥ 𝑎𝑎+. . . +𝑎𝑎𝑏𝑏𝛾𝛾(𝑛𝑛−3)

𝑛𝑛−3 + 𝑏𝑏𝛾𝛾(𝑛𝑛)
𝑛𝑛−2 + 𝑎𝑎𝑏𝑏𝛾𝛾(𝑛𝑛−1)

𝑛𝑛−1 + 𝑎𝑎𝑏𝑏𝛾𝛾(𝑛𝑛−2)
𝑛𝑛 , 

from which the equivalent inequalities follow 
𝑎𝑎𝑏𝑏𝛾𝛾(𝑛𝑛−2)

𝑛𝑛−2 + 𝑏𝑏𝛾𝛾(𝑛𝑛)
𝑛𝑛 ≥ 𝑎𝑎𝑏𝑏𝛾𝛾(𝑛𝑛)

𝑛𝑛−2 + 𝑎𝑎𝑏𝑏𝛾𝛾(𝑛𝑛−2)
𝑛𝑛 ⇔ 

𝑓𝑓�𝑏𝑏𝛾𝛾(𝑛𝑛−2)� ≥ 𝑓𝑓�𝑏𝑏𝛾𝛾(𝑛𝑛)�,                      (21) 

where the function 𝑓𝑓(𝑥𝑥) has the form 𝑓𝑓(𝑥𝑥) = 𝑥𝑥𝑛𝑛−2 − 𝑥𝑥𝑛𝑛.. Its first derivative 𝑓𝑓 ′(𝑥𝑥) =
(𝑛𝑛 − 2)𝑥𝑥𝑛𝑛−3 − 𝑛𝑛𝑥𝑥𝑛𝑛−1 is taken when 𝑥𝑥 = 𝜒𝜒0. By direct substitution, we make sure that when 
𝑥𝑥 > 𝑥𝑥0 the inequality 𝑓𝑓 ′(𝑥𝑥) < 0, is true, that is, when 𝑥𝑥 > 𝑥𝑥0 the function 𝑓𝑓(𝑥𝑥) decreases, 
and, since from the condition of the theorem 𝑏𝑏𝛾𝛾(𝑛𝑛−2) and 𝑏𝑏𝛾𝛾(𝑛𝑛) are more than 𝑥𝑥0, is necessary 
𝑏𝑏𝛾𝛾(𝑛𝑛−2) ≤ 𝑏𝑏𝛾𝛾(𝑛𝑛) to fulfill the inequality (21) . 

Thus, the chain of inequalities is true: 

𝑏𝑏𝛾𝛾(1) < 𝑏𝑏𝛾𝛾(2) < ⋯ < 𝑏𝑏𝛾𝛾(𝑛𝑛−2) < 𝑏𝑏𝛾𝛾(𝑛𝑛) < 𝑏𝑏𝛾𝛾(𝑛𝑛−1), 

which is now determined unambiguously, namely, after the shutdown, the optimal schedule 
has the form {𝑏𝑏1, 𝑏𝑏2, 𝑏𝑏3, … , 𝑏𝑏𝑛𝑛−2, 𝑏𝑏𝑛𝑛, 𝑏𝑏𝑛𝑛−1}.. Therefore, when 𝐽𝐽 = 2,𝑛𝑛 − 2 the optimal 
schedule is locally stable, but is not conditionally stable for any period , , since the last batch 
in the new optimal schedule does not have the highest coefficient, 𝑏𝑏𝑛𝑛 does not stand in last 
place. 

3.4 Conditionally stable optimal schedule in the 𝑱𝑱 period 

We consider an example of conditional stability in the 𝐽𝐽 period. Let there be a production 
shutdown in the 𝐽𝐽 period, 

Theorem 3. Let the parameters 𝑎𝑎𝑖𝑖, 𝑏𝑏𝑖𝑖𝑖𝑖  satisfy the conditions:  
1)             𝑏𝑏𝑖𝑖𝑖𝑖 = 𝑏𝑏𝑖𝑖,  𝑖𝑖 = 1,𝑛𝑛, 𝑗𝑗 = 3,𝑛𝑛.                                                                     (22) 
2) 𝑎𝑎1 > 𝑎𝑎2, 𝑎𝑎𝑘𝑘 = 𝛩𝛩𝑘𝑘𝑎𝑎2, where 𝛩𝛩𝑘𝑘, 𝑘𝑘 = 3,𝑛𝑛, is a finite decreasing sequence, 0 < 𝛩𝛩𝑘𝑘 <

1; 
3) The equalities are valid: 𝑏𝑏𝑖𝑖1 = 𝑏𝑏𝑖𝑖2, 𝑖𝑖 = 1,𝑛𝑛, 𝑏𝑏11 < 𝑏𝑏21, and the expressions 𝑏𝑏𝑘𝑘1 =

𝛽𝛽𝑘𝑘𝑏𝑏21,  𝛽𝛽𝑘𝑘 > 1, 𝑘𝑘 = 3,𝑛𝑛. where 𝛽𝛽𝑘𝑘, is a finite increasing sequence. 
In addition, the inequalities are true 

 0 < 𝛽𝛽𝑘𝑘−2 < 𝛩𝛩𝑘𝑘 < 𝛽𝛽𝑘𝑘−1,   𝑘𝑘 = 3,𝑛𝑛,     (23) 

and equality 

𝛩𝛩3𝛽𝛽32 = 𝑚𝑚𝑎𝑎𝑥𝑥
𝑘𝑘≥3

𝛩𝛩𝑘𝑘𝛽𝛽𝑘𝑘2                   (24) 

holds. 
Let the production shutdown occurred during the 𝐽𝐽 period, 𝐽𝐽 = 2,𝑛𝑛 − 1. 
Then the batches are numbered according to the initial optimal schedule and the optimal 

processing order found for these parameters will be conditionally stable for time 
periods 𝐽𝐽,  𝐽𝐽 = 3,𝑛𝑛 − 1.  

Proof. We prove that for an optimal schedule 𝑣𝑣 that does not consider the production 
shutdown, for parameters satisfying the conditions of the theorem, it is true that 𝑣𝑣(𝑖𝑖) = 𝑖𝑖,
𝑖𝑖 = 1,3. 
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We prove that in the optimal processing schedule, the batch with the number 1 is in 1 
place. Let it not be so. What is the count of the first batch that can be processed? 

Suppose in the optimal schedule given by the permutation 𝑣𝑣, the first batch is in the 𝑚𝑚 
place, and the 𝑘𝑘 batch is in the first place, that is 𝑣𝑣(𝑘𝑘) = 1, 𝑘𝑘 ≥ 2, 𝑣𝑣(1)  =  𝑚𝑚 =  2, swap 
the first and second batches of the optimal schedule 𝑣𝑣, then according to the necessary 
optimality condition: 

( ) ( ) ( ) ⇔≥−−+=− → 01111121
*

kvkvkv baabaaSS 𝑎𝑎𝑣𝑣(𝑘𝑘)�1 − 𝑏𝑏𝑣𝑣(𝑘𝑘)1� ≥ 𝑎𝑎1(1 − 𝑏𝑏11), (25) 

but from the conditions of the theorem 𝑎𝑎𝑣𝑣(𝑘𝑘) < 𝑎𝑎1, when 𝑘𝑘 ≥ 2, and �1 − 𝑏𝑏𝑣𝑣(1)1� <
(1 − 𝑏𝑏11), since 𝑏𝑏11 < 𝑏𝑏𝑖𝑖1 for any 𝑖𝑖 ≥ 2 , therefore inequality (25) is not true for any 𝑘𝑘 ≥ 2, 
therefore 𝑣𝑣(1) ≠ 2. 

Let 𝑣𝑣(1)  =  𝑚𝑚 ≥ 3, 𝑣𝑣(𝑘𝑘) = 1, 𝑘𝑘 ≥ 2, swap the first and third batches of the optimal 
schedule 𝑣𝑣, then according to the necessary optimality condition: 

𝑆𝑆∗ − 𝑆𝑆1→3 = 𝑎𝑎𝑣𝑣(𝑘𝑘) + 𝑎𝑎1𝑏𝑏11𝑏𝑏12𝜇𝜇 − 𝑎𝑎1 − 𝑎𝑎𝑣𝑣(𝑘𝑘)𝑏𝑏𝑣𝑣(𝑘𝑘)1𝑏𝑏𝑣𝑣(𝑘𝑘)2𝜇𝜇 ≥ 0 ⇔ 𝑎𝑎𝑣𝑣(𝑘𝑘)�1 −
𝑏𝑏𝑣𝑣(𝑘𝑘)1𝑏𝑏𝑣𝑣(𝑘𝑘)2𝜇𝜇� ≥ 𝑎𝑎1(1 − 𝑏𝑏11𝑏𝑏12𝜇𝜇),⇔  

𝑎𝑎𝑣𝑣(𝑘𝑘)(1 − 𝜇𝜇𝑏𝑏𝑣𝑣(𝑘𝑘)1
2 ) ≥ 𝑎𝑎1(1 − 𝜇𝜇𝑏𝑏112 ),       (26) 

where 𝜇𝜇 = 𝑏𝑏𝑖𝑖3 … 𝑏𝑏𝑖𝑖𝑚𝑚−1 and 𝑚𝑚 ≥ 3 (𝜇𝜇 does not depend on the parameter 𝑖𝑖 ,see (22)), if 𝑚𝑚 =
2, then 𝜇𝜇 = 1. Nevertheless, 𝑎𝑎𝑣𝑣(𝑘𝑘) < 𝑎𝑎1, when 𝑘𝑘 ≥ 2 and (1 − 𝜇𝜇𝑏𝑏𝑣𝑣(1)1

2 ) < (1 − 𝜇𝜇𝑏𝑏112 ), since 
𝑏𝑏11 < 𝑏𝑏𝑖𝑖1, for any 𝑖𝑖 ≥ 2, , therefore inequality (26) is not true for any 𝑘𝑘 ≥ 2, therefore 𝑣𝑣(1) <
3. Given the previous reasoning, we get that 𝑣𝑣(1) = 1. 

We prove that 𝑣𝑣(2) = 2. Suppose the opposite: 𝑣𝑣(2) = 𝑚𝑚 ≥ 3. Then 𝑘𝑘 ≥ 3 exists there 
for which 𝑣𝑣(𝑘𝑘) = 2. Let 's swap the second and 𝑚𝑚 batches of the optimal schedule 𝑣𝑣, then 
according to the necessary optimality condition:  

𝑆𝑆∗ − 𝑆𝑆2→𝑚𝑚 = 𝑎𝑎𝑣𝑣(𝑘𝑘)𝑏𝑏𝑣𝑣(𝑘𝑘)1 + 𝑎𝑎2𝑏𝑏21𝑏𝑏22𝜇𝜇 − 𝑎𝑎2𝑏𝑏21 − 
−𝑎𝑎𝑣𝑣(𝑘𝑘)𝑏𝑏𝑣𝑣(𝑘𝑘)1𝑏𝑏𝑣𝑣(𝑘𝑘)2𝜇𝜇 ≥ 0 

⇔ 𝑎𝑎𝑣𝑣(𝑘𝑘)𝑏𝑏𝑣𝑣(𝑘𝑘)1(1 − 𝜇𝜇𝑏𝑏𝑣𝑣(𝑘𝑘)2) ≥ 𝑎𝑎2𝑏𝑏21(1 − 𝜇𝜇𝑏𝑏22) 
⇔ 𝑎𝑎𝑣𝑣(𝑘𝑘)𝑏𝑏𝑣𝑣(𝑘𝑘)1(1 − 𝜇𝜇𝑏𝑏𝑣𝑣(𝑘𝑘)1) ≥ 𝑎𝑎2𝑏𝑏21(1 − 𝜇𝜇𝑏𝑏22) 

⇔ 𝑎𝑎𝑣𝑣(𝑘𝑘)𝑏𝑏𝑣𝑣(𝑘𝑘)1(1 − 𝜇𝜇𝑏𝑏𝑣𝑣(𝑘𝑘)1) ≥ 𝑎𝑎2𝑏𝑏21(1 − 𝜇𝜇𝑏𝑏21).  (27) 

Contradiction, since 1 − 𝜇𝜇𝑏𝑏𝑣𝑣(𝑘𝑘)1 < 1 − 𝜇𝜇𝑏𝑏21, since 𝑏𝑏𝑣𝑣(𝑘𝑘)1 > 𝑏𝑏21, moreover 
𝑎𝑎𝑣𝑣(𝑘𝑘)𝑏𝑏𝑣𝑣(𝑘𝑘)1 = 𝜃𝜃𝑣𝑣(𝑘𝑘)𝛽𝛽𝑣𝑣(𝑘𝑘)𝑎𝑎2𝑏𝑏21 < 𝑎𝑎2𝑏𝑏21, since it follows from (23) that 𝜃𝜃𝑣𝑣(𝑘𝑘)𝛽𝛽𝑣𝑣(𝑘𝑘) < 1, then 
inequality (27) is not true. Contradiction, therefore, 𝑣𝑣(2) = 2. 

Further, from the condition (22) according to the theorem 1, processing proceeds 
according to sugar content descending, which was formed by the third period. For 𝑖𝑖 ≥ 3 
according to condition (24), the sugar content 𝑝𝑝𝑖𝑖3 is maximal among the remaining ones, 
therefore 𝑣𝑣(3) = 3. It follows from the theorem 1 that the processing further proceeds in 
descending order of numbers 𝑝𝑝𝑖𝑖3 and the optimal schedule is absolutely stable, if you do not 
consider the batches with numbers 1 and 2. That is, when 𝐽𝐽 = 3,𝑛𝑛 − 1 the optimal schedule 
is conditionally stable. 

Next we prove that the optimal schedule is unstable when 𝐽𝐽 = 2, that is, it is not absolutely 
stable. Even if this is not the case, the optimal schedule remains the same. In the optimal 
schedule, we will swap the second line and the third one, considering the shutdown. Then it 
follows from the necessary optimality condition that 

�̃�𝑆∗ − �̃�𝑆2→3 = 𝑎𝑎2𝑏𝑏21𝑏𝑏22 + 𝑎𝑎3𝑏𝑏31𝑏𝑏32𝑏𝑏33 − (𝑎𝑎3𝑏𝑏31𝑏𝑏32 + 𝑎𝑎2𝑏𝑏21𝑏𝑏22𝑏𝑏23) ≥ 0 ⇔ 
⇔ 𝑎𝑎2𝑏𝑏212 (1 − 𝑏𝑏23) ≥ 𝑎𝑎3𝑏𝑏312 (1 − 𝑏𝑏33) ⇔ 𝑎𝑎2𝑏𝑏212 ≥ 𝑎𝑎3𝑏𝑏312 ⇔ 

⇔ 𝑎𝑎2𝑏𝑏212 ≥ 𝜃𝜃3𝛽𝛽32𝑎𝑎2𝑏𝑏212 ⇔ 1 ≥ 𝜃𝜃3𝛽𝛽32. 
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A contradiction, since from inequality (23) it follows that 𝜃𝜃3𝛽𝛽32 > 1. That is, the 
necessary optimality condition for the second and third lines is not met. The optimal schedule 
is unstable when 𝐽𝐽 = 2, therefore there is no absolute stability and the optimal processing 
order is conditionally stable for periods 𝐽𝐽, 𝐽𝐽 = 3,𝑛𝑛 − 1. 

4 Numerical experiment  

4.1 Assessment of possible losses for 𝒏𝒏 = 𝟏𝟏𝟏𝟏𝟏𝟏 

How much can the objective function lose if, after the shutdown, it uses the previous optimal 
(but already because of the shutdown – (possibly not optimal) schedule? This question can 
be answered by conducting numerical experiments using a personal computer. Using the 
Hungarian algorithm, it is possible to obtain the maximum value of the objective function 
estimate for any parameters 𝑎𝑎𝑖𝑖, 𝑏𝑏𝑖𝑖𝑖𝑖 , 𝑖𝑖 = 1,𝑛𝑛, 𝑗𝑗 = 1,𝑛𝑛, if they are all known; or to give an 
average estimate also numerically, after conducting a sufficient number of experiments (for 
example, 50), similar to the works [19-22]. To complete the picture, we will conduct 2 series 
of experiments for 𝑛𝑛 = 100 and 𝑛𝑛 = 20.  

Let 𝑛𝑛 = 100 one time period be equal to one day, the series consists of 50 experiments. 
For each series of experiments, we will set the production shutdown period – a period 𝐽𝐽, a 
constant 𝜓𝜓 by means of a uniform distribution at random intervals. For each experiment, sets 
of parameters 𝑎𝑎𝑖𝑖 , 𝑏𝑏𝑖𝑖𝑖𝑖 , 𝑖𝑖 = 1,𝑛𝑛, 𝑗𝑗 = 1,𝑛𝑛, 𝑎𝑎𝑖𝑖 ∈ (0,15,0.25), 𝑏𝑏𝑖𝑖𝑖𝑖 ∈ (𝜓𝜓, 0.99) are generated. In 
each experiment, the following were found:  

1) the maximum value of the objective function without considering the shutdown – 𝑆𝑆∗, 
2) the maximum value of the objective function , considering the shutdown – �̃�𝑆∗, 
3) the maximum value of the objective function, considering the shutdown, if processing 

went according to the old optimal schedule – �̃�𝑆0, 
3) the difference between the values of the objective functions cl. 2 and cl. 3 – 𝛥𝛥�̃�𝑆0 , where 

𝛥𝛥�̃�𝑆0 = �̃�𝑆∗ − �̃�𝑆0, 
4) the averaged values of the objective functions of clauses 1-3 without considering and 

considering the shutdown, 
5) relative average losses 𝜔𝜔, 𝜔𝜔 = ⟨𝛥𝛥�̃�𝑆0⟩

⟨�̃�𝑆∗⟩
× 100%. 

Table 1. Comparison of objective functions with new and old optimal schedules or 𝑏𝑏𝑖𝑖𝑖𝑖 ∈ (𝜓𝜓, 0.99),  
𝑛𝑛 = 100 

𝐽𝐽 𝜓𝜓 ⟨𝑆𝑆∗⟩ ��̃�𝑆∗� ��̃�𝑆0� �𝛥𝛥�̃�𝑆0� 𝜔𝜔 

2 
25 
50 

0.85 
0.85 
0.85 

3.395 
3.395 
3.395 

3.163 
3.361 
3.390 

3.046 
3.334 
3.385 

0.117 
0.027 
0.005 

3.70 
0.80 
0.15 

2 
25 
50 

0.9 
0.9 
0.9 

4.573 
4.573 
4.573 

4.346 
4.516 
4.561 

4.223 
4.480 
4.556  

0.123 
0.036 
0.005 

2.83 
0.80 
0.11 
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2 
25 
50 

0.93 
0.93 
0.93 

4.591 
4.591 
4.591 

4.364 
4.534 
4.580 

4.262 
4.508 
4.574 

0.102 
0.026 
0.006 

2.33 
0.57 
0.13 

2 0.95 7.296 7.081 7.008 0.073 1.03 

2 0.97 9.498  9.298 9.251 0.047 0.50 

Table 2. Comparison of objective functions with new and old optimal schedules for 𝑏𝑏𝑖𝑖𝑖𝑖 ∈
(0.99,0.9999), 𝑛𝑛 = 100. 

𝐽𝐽 ⟨𝑆𝑆∗⟩ ��̃�𝑆∗� ��̃�𝑆0� �𝛥𝛥�̃�𝑆0� 𝜔𝜔 

2 
25 
50 

16.268 
16.268 
16.268 

16.116 
16.142 
16.165 

16.069 
16.107 
16.141 

0.047 
0.035 
0.024 

0.29 
0.21 
0.15 

These results for max 𝑏𝑏𝑖𝑖𝑖𝑖 < 0.99 are tabulated 1. The table 2 shows the results when the 
degradation coefficients are very close to ,1 𝑏𝑏𝑖𝑖𝑖𝑖 ∈ (0.99,0.9999). It can be seen from table 2 
that in this case the losses due to the fact that the schedule was not changed are relatively 
small. 

4.2 Assessment of possible losses for 𝒏𝒏 = 𝟐𝟐𝟏𝟏 

Let 𝑛𝑛 = 20, 1 period be equal to a week. All other actions are similar to numerical experiment 
1 (when 𝑛𝑛 = 100). The values 𝑆𝑆∗, �̃�𝑆∗, �̃�𝑆0, 𝛥𝛥�̃�𝑆0, ⟨𝑆𝑆∗⟩, ��̃�𝑆∗�, ��̃�𝑆0�, �𝛥𝛥�̃�𝑆0�, 𝜔𝜔 are found. These 
results are summarized in a table 3, each row corresponds to its own series of experiments. 

Table 3. Comparison of objective functions with new and old optimal schedules for 𝑏𝑏𝑖𝑖𝑖𝑖 ∈ (𝜓𝜓, 0.99), 

 𝑛𝑛 = 20. 

𝐽𝐽 𝜓𝜓 ⟨𝑆𝑆∗⟩ ��̃�𝑆∗� ��̃�𝑆0� �𝛥𝛥�̃�𝑆0� 𝜔𝜔 

2 
10 

0.85 
0.85 

2.025 
2.025 

1.863 
1.951 

1.789 
1.926 

0.074 
0.025 

4.00 
1.28 

2 
10 

0.87 
0.87 

2.156 
2.156 

1.995 
2.074 

1.932 
2.047 

0.063 
0.027 

3.16 
1.30 

2 
10 

0.9 
0.9 

2.379 
2.379 

2.220 
2.286 

2.167 
2.261 

0.053 
0.025 

2.39 
1.09 

2 
10 

0.93 
0.93 

2.637 
2.637 

2.484 
2.535 

2.443 
2.512 

0.041 
0.023 

1.65 
0.91 

2 
10 

0.95 
0.95 

2.833 
2.833 

2.685 
2.725 

2.654 
2.707 

0.031 
0.018 

1.15 
0.66 

11

E3S Web of Conferences 395, 03007 (2023)
ETSAIC2023

https://doi.org/10.1051/e3sconf/202339503007



2 
10 

0.97 
0.97 

3.05 
3.05 

2.909 
2.936 

2.891 
2.925 

0.018 
0.011 

0.62 
0.37 

It should be noted that 𝑆𝑆 is a proportionality coefficient between the incoming raw 
materials for the period and the total sugar yield. Under the assumptions made, the sucrose 
input and, accordingly, the sugar output is equal to 𝑀𝑀 ⋅ 𝑆𝑆, where 𝑀𝑀 is the mass of processed 
raw materials for the period. For example, the Sergach Sugar Factory processes 3,000 tons 
of sugar beet per day. That is, when 𝑛𝑛 = 100 – 𝑀𝑀 = 3000 tons, and for 𝑛𝑛 = 20 – 𝑀𝑀 =
21000 tons. For example, the largest difference between the average values of the new and 
old optimal schedule in Table 1 is 0.117, that is, 351 tons of sugar were not received, and in 
the third – 0.074, that is, 1554 tons of sugar were not received. 

5 Discussion  
If all the parameters of the parties are known, then it is not difficult to find out the stability 
of the optimal schedule in general, it is enough for everyone 𝐽𝐽, 𝐽𝐽 = 2,𝑛𝑛 − 1, to calculate a 
new optimal schedule using the Hungarian algorithm and compare it with the old one. This 
is "not long" in terms of machine time. Nevertheless, as mentioned above, in practice, it is 
not possible to know all the exact parameters of the parties a priori. But with the help of 
computer modeling, it is possible to calculate the average difference between the values of 
the objective function for the "new" and "old" optimal schedule in a series of experiments 
with the assumed parameters and then evaluate the losses due to the fact that the original 
optimal processing schedule has not been replaced. 

The sustainability of the optimal schedule is important for the enterprise working on it. If 
the schedule is absolutely stable, it means that at any time moment there would be a 
breakdown, the optimal schedule remains the same. This has a positive impact on both long-
term planning and logistics, as well as on the working environment in case of force majeure. 
Conditional stability during the period 𝐽𝐽 means that you can confidently schedule work if 
production stops during this period of time. Local stability during the period 𝐽𝐽 shows that at 
least after the breakdown is eliminated, the same batch is being processed that was planned 
if production had not stopped. There is also a positive moment in this, since raw materials 
are brought to production in advance.  

Numerical experiment has shown that if the number of the shutdown period is not less 
than half of the total number of batches, then, generally speaking, there is no need to worry 
about changing the optimal schedule at acceptable intervals fixed in experiments, 
nevertheless, if the shutdown period is at the beginning of processing, then it is desirable to 
change the optimal schedule. If the degradation coefficients of the batches 𝑏𝑏𝑖𝑖𝑖𝑖  for 𝑛𝑛 = 100 
for the period is at least 0.99 (that is, for example, under very good storage conditions), then 
it also makes almost no sense to change the optimal schedule. 

It is not difficult to make sure that you can also consider a simple production, which lasts 
not one, but several days. To consider this within the framework of the mathematical model, 
it is necessary to combine all these days into a certain period and enter for each batch of 
product a total degradation coefficient for the entire production downtime equal to the 
product of the degradation coefficients of this batch for the days of downtime. It is also 
possible to introduce the possibility of not one, but several downtimes into the mathematical 
model. To do this, it is necessary to change the objective function: put in it only those terms 
that correspond to working days, that is, when production was working and processing of 
raw materials was carried out. What is the maximum number of percentages of the objective 
function for an optimal schedule that can be neglected? How many days of downtime are 
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there on average per season at the enterprise? What value 𝜓𝜓 is more appropriate to put for 
processed sugar beet hybrids of a particular region? The search for answers to these questions 
is a subject for further research by specialists in the relevant fields.  

6 Conclusion 
In this paper, a mathematical model of the optimal schedule for processing a finite number 
of batches of perishable product has been set and expanded relative to previous works. The 
expansion of the model consists in the fact that in the 𝑱𝑱 period of time, 𝑱𝑱 = 𝟐𝟐,𝒏𝒏 − 𝟏𝟏, 
production stops due to equipment failure (power outages, etc.), which actually happens quite 
often. This complicates the model somewhat, nevertheless, it is possible to obtain an optimal 
solution using the same methods that are used to solve the main problem and do not consider 
the temporary shutdown of production. Naturally, when additional conditions are introduced, 
some difficulties appear, which are discussed in the article, it also shows the way to overcome 
them. The main method of solving such problems involves knowing all the parameters of the 
processed batches, including those that cannot be known a priori (one can only know 
empirical estimates of these coefficients). Based on two main special cases, examples of 
absolute stability, conditional stability in the period 𝑱𝑱 and local stability in the period 𝑱𝑱 of 
optimal schedules are given. Their benefits for production are discussed. Due to the specifics 
of the objective function, minor deviations of its parameters have little effect on its value. In 
the article, optimal schedules are found for two main special cases, their absolute stability is 
proved, with the proximity of the initial parameters to such special cases, quasi-optimal 
processing schedules can be built on their basis, and due to absolute stability, they remain 
quasi-optimal schedules, considering the shutdown.  

The problem of availability, sufficiency, and accessibility of food for the population of 
the country is one of the factors determining the sovereignty of the country and can be solved 
only by their joint consideration and optimization of both cultivation and processing of 
products [25]. Sugar in Russia is of great strategic importance, and the sugar industry has a 
significant structure-forming influence on the establishment of sectoral proportions in the 
economy, therefore, optimization of the sugar beet processing schedules is important, 
especially considering that it practically does not require significant costs for its introduction 
into production.  
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