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Abstract. The hydrodynamic effect of the water mass of the reservoir on 

the pressure face of the dam can be determined from the function of the 

coefficient of the added mass of water obtained in the Westergard solution. 

For an inclined pressure face, the design standards introduce a correction 

factor, which is recommended to be taken into account until the slope of 

the pressure face does not exceed 150; there are no such recommendations 

for earth dams, however, in the calculations of seismic resistance of earth 

dams, taking into account hydrodynamic water pressure is also important. 

Theoretically, the values of the coefficients of the added mass of water can 

be determined based on the numerical solution of the Laplace equation in 

the computational domain with given boundary conditions and the 

graphical-analytical construction of a hydrodynamic grid. Thus, in the 

MATLAB environment, computational schemes were built for different 

laying of the pressure head of the dam in the range from vertical to flat 

with laying 1:3, and orthogonal hydrodynamic grids were built, reflecting 

the solution of the Laplace equations concerning the functions of pressure 

and velocity potentials. For all problems, diagrams of the coefficients of 

the added mass of water are constructed, and they are compared with the 

Westergaard analytical solution. For practical use in the work, all solutions 

for constructing diagrams of the coefficients of the added mass of water are 

presented in the form of a nomogram.  

1 Introduction 

The development of theoretical foundations for taking into account the interaction of 

structures with the aquatic environment during vibrations began in the 30s of the last 

century; however, even today, it is being actively developed by domestic [1, 2] and foreign 

scientists [3-10], both finite element methods and analytical methods are used for solving 

individual problems. When solving the problem of the hydrodynamic interaction of a solid 

body with a liquid, some prerequisites are taken into account: about the properties of the 

liquid (viscosity, compressibility, uniformity); about the state of the free surface of the 
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water (wave, waveless); - about the properties of the host bed of the reservoir (elastic, 

rigid); about the properties of a solid body (elastic, rigid). In solving problems, the 

provisions of continuum mechanics and the theory of small deformations are also adopted. 

The movement of water during oscillations is considered to be irrotational; therefore, the 

value of the velocity at each point is described by some potential function          for 

which we can write: 
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where ( , , )u x y t  and ( , , )v x y t  are the displacement functions in the direction of the 

coordinate axis X and Y.  
 The velocity potential function ( , , )x y t  satisfies the wave equation known from 

hydromechanics: 
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For the hydrodynamic pressure function, one can also write: 
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The simplest theoretical model that makes it possible to obtain a solution about water's 

hydrodynamic pressure on a structure's pressure face is the model of an ideal 

incompressible fluid. The Westergard solution obtained for the seismic water pressure on 

the rigid vertical pressure face of the dam for an incompressible fluid and a structure 

located in a rectangular canyon is a reference in all calculations of hydraulic structures and 

underlies the methods used. 

2 Methods 

The hydrodynamic impact of water on structures during an earthquake can be modeled 

using an "attached" mass of water. At present, calculations of hydraulic structures during 

earthquakes are carried out using the recommended Russian State Standards: SP 

14.13330.2018 Construction in seismic areas and SP 358.1325800.2017 Hydraulic 

structures. Rules for design and construction in seismic regions; calculation formulas for 

determining the value of the added mass of water attributable to the estimated area of the 

dam pressure face:       

 

0 .k k p fm H S    (4) 

 

where 0  is the density of water; 

H - water depth at the base of the structure; 

.p fS  - the surface area of the pressure face of the kth element; 

k -  the coefficient of the added mass of water in the kth element of the pressure face; 
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 - the coefficient taking into account the limited length of the reservoir, is determined 

according to [11]. 

 The main issue of calculating the added mass of water remains the determination of the 

value of the coefficient 
k  , which depends on the location of the pressure face of the dam. 

 As part of the consideration of horizontal vibrations, we will assume that earthquakes 

cause harmonic vibrations, and the dam can be represented as a rigidly fixed wall that 

moves as a whole along with the foundation. In such a case, the displacements can be 

determined from the equation: 
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where A  is the accepted acceleration of the earth's surface during an earthquake. 

 Assuming that the displacements of the dam elements are small, then the relationships 

between hydrodynamic pressure, time, and orthogonal displacements (u, v, s) will be 

expressed by the following differential equations: 
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Taking into account the assumption of the incompressibility of water [12], the 

continuity equation has the form: 
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Using equations (3) and (4), to determine the hydrodynamic pressure, we obtain: 
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The resulting elliptic differential equation is called the Laplace equation, which also 

describes the behavior of a direct electric current in a conducting medium. The identity of 

differential equations makes it possible to obtain solutions to a hydrodynamic problem by 

solving an electrodynamic problem, on which the method of electrohydrodynamic analogy 

is based, which is widely used to solve problems of laminar motion of a fluid in a porous 

medium (filtration) [13]. It was this method that K. Zangar used to determine the 

hydrodynamic pressure on the pressure faces of dams in his work using 

electrohydrodynamic analogy devices. 

 As part of solving the problem of determining the coefficient k , consider a flat area 

describing the inclination of the pressure head and some area of the reservoir behind it 

(Fig. 1). 
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Fig. 1. Problem solution area 

 

It is convenient to represent the solution of the Laplace equation for a given region in the 

form of a hydrodynamic grid composed of the intersection of a family of equipotentials 

(H = const) and streamlines (P = const). 

 First, to construct a hydrodynamic grid, it is necessary to set the boundary conditions 

that describe the behavior of the above functions on the area's boundaries under 

consideration (lines AB, BC, CD, DA). Following [14], boundary conditions will be 

satisfied at the region's boundaries, which in mathematical physics are called the Dirichlet 

and Neumann conditions. 

The Dirichlet condition (or condition of the 1st kind) is the method of specifying the 

boundary condition when the distribution of some desired quantity is given directly by the 

function: 

 

( ) ( )bF x H x  (6) 

 

The Neumann condition (or condition of the 2nd kind) is the method of specifying the 

boundary condition when the distribution of some desired quantity is given not by a direct 

function but by its normal derivative: 

 

( )
( )b
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
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In the area studied in the framework of our problem, the following conditions will be 

satisfied at the boundaries: 

1. AB is at the bottom of the reservoir; the hydrodynamic head is constant 

H h const   (Dirichlet condition) (8) 

2. BC is the conditional watertight boundary of the reservoir, which is a streamline 

0
H

n





 (Neumann condition) (9) 

3. СD is the free surface of the reservoir; the hydrodynamic head is equal to zero 

0H const   (Dirichlet condition) (10) 
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4. DA is the pressure face of the dam, the pressure at each point of the boundary is 

determined as a function of the height and the angle   between the pressure face 

and the vertical 

( ,cos( ))H f h  (Dirichlet condition) (11) 

Note that to eliminate the influence of the length of the reservoir on the solution of the 

Laplace equation, the following condition was fulfilled in the calculations [11]: 

3resL h  (12) 

The Laplace equation with these boundary conditions will be solved by the finite 

element method in the MATLAB programming language for slopes of the dam pressure 

head with an angle 0 ,5 ,10 ,15 ,20 ,40 ,60 ,75 .           The solution algorithm is 

considered in detail in [15,16]. Note that the construction of streamlines was carried out 

graphically (by hand), ensuring that the hydrodynamic grid was orthogonal and quadratic. 

The calculation results and coefficient diagrams 
k for some calculation cases are 

presented in the figures below; equipotentials and streamlines are shown by solid and 

dotted lines, respectively. 

3 Results 

 

Fig. 2. Hydrodynamic grid and coefficient distribution diagram k for 0    

 

Fig. 3. Hydrodynamic grid and coefficient distribution diagram k for 15    
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Fig. 4. Hydrodynamic grid and coefficient distribution diagram 
k for 40    

 

Fig. 5. Hydrodynamic grid and coefficient distribution diagram k for 60    

 

Fig. 6. Hydrodynamic grid and coefficient distribution diagram k  for 75    

Figure 6 shows a generalization of the results of constructing coefficient distribution 

diagrams k for all considered vertical angles : 
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Fig. 7. Dependence of coefficient k  on relative depth of water at various values of vertical angle  

 

The figure below shows an alternative generalization of the obtained results in a nomogram 

for the practical construction of diagrams for plotting the coefficient k  for vertical angle 

values within 0 ... 75 . 
 

 

Fig. 8. Nomogram for plotting coefficient k  distribution diagram 
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4 Discussion 

 Comparing the obtained coefficient distribution diagram for the vertical pressure face 

with the diagram constructed according to the results of the Westergaard solution and fixed 

in the Russian State Standards:  

 

 

Fig. . Comparison of diagrams k  obtained by various calculation methods 

 

As seen from Figure 8, the solutions coincided with a very high accuracy, which indicates 

the correctness and adequacy of the methodology for the solution of the Laplace equation. 

5 Conclusions 

1. Hydrodynamic grids and coefficient distribution diagrams k  for pressure faces of 

dams with a vertical laying angle 0 ,5 ,10 ,15 ,20 ,40 ,60 ,75           are constructed. 

2. The results of the obtained solutions are generalized, and a nomogram is constructed for 

the practical construction of coefficient distribution diagrams k  for the pressure faces 

of dams within 0…75  
3. The obtained result is compared with the well-known Westergaard solution, and the 

correctness and adequacy of the chosen method for determining the values of the 

coefficient k  is proved. 
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