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Abstract. The article is devoted to the analytical calculation of the 

main parameters and dimensions of a pneumohydraulic hydraulic 

shock damper with a decrease in pressure installed at the beginning 

of a pressure pipeline to reduce the emergency consequences of the 

intensity of shock waves, taking into account the polytropic process 

of air in the damper. Based on the results of analytical studies of the 

wave equations of non-stationary pressure movements for the 

proposed hydraulic shock damper, dependences were obtained for 

calculating the maximum and minimum impact heads in the first 

period of pressure fluctuations, considering the polytropic index. 

To substantiate the reliability of the proposed dependencies and the 

economic dimensions of the damper design, comparative 

calculations of analytical studies with experimental data and data 

from other authors were performed. Comparative calculations 

prove the reliability of the proposed dependences obtained by the 

analytical method of solutions to the known equations of motion of 

hydromechanics, continuity, and state of the air in the damper. 

1 Introduction 

Currently, to dampen the force of hydraulic shock that occurs in a long pressure pipeline, 

pneumohydraulic dampers are widely used [1-7]. Similar anti-shock devices (dampers) can 

protect water supply pipelines from water hammers. When installing a damper at the 

beginning of pressure pipelines of pumping stations, their dimensions are determined by the 

conditions for starting and stopping pumps [3, 4, 7, 8, 9]. Dampers are calculated in 

different ways according to the conditions for stopping the pumps. Still, the most common 

method is to select the damper volume according to Evangelisti graphs, compiled from 

approximate integration of differential equations of unsteady fluid motion using the finite 

difference method [5]. However, these graphs are calculated only for a very small change 

interval in the main parameters of pressure pipelines of pumping stations during hydraulic 

shock in the presence of dampers. There is no general solution in Evangelisti's work; 

therefore, in many cases, this method is not applicable [4-6]. 
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2 Materials and methods  

When solving the problem of determining the main parameters and dimensions of hydraulic 

shock dampers in a pipeline in a general form, in the presence of dampers in the place of 

perturbation of the flow, the following three equations are used [3, 7, 10, 11]. 

The differential equation of acting forces obtained as a result of transformations of the 

known Navier-Stokes dependences and having the form [3, 7, 10] 
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Flow continuity equation in a pressure pipeline in the presence of a damper [3,7,10] 

 
dV1 = Qdt.     (2) 

 

The equation expressing the law of change in the volume of air in the damper has the 

following form [3,7,10] 
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The above equations have the following notation: 

ϑ and H are flow velocity and the absolute pressure in the pipeline at the damper 

installation site at time t; Q is flow rate of the fluid during steady motion; β is coefficient of 

momentum; x is coordinate along the length of the pipeline; ρ is liquid density; R is 

hydraulic radius of the pipe; τnu is shear stress at the pipe wall in unsteady flow; g is 

acceleration of gravity; V is volume of air in the damper at the moment t; V1 is increase in 

the volume of air in the damper; Vг is volume of air in the damper at the absolute geodetic 

head Ho-a (Fig. 1); n is polytropic index [3, 4]. 

The accuracy of calculating the hydraulic shock damper depends on the reliable value of 

the polytropic index n [3,4]. In engineering practice, there is a problem with the selection of 

the numerical value of the polytropic index n, which considers the law of compression and 

expansion of air in the hydraulic shock damper [3, 4]. So, for example, N.E. Zhukovsky, 

when calculating a hydraulic shock damper, takes the process as adiabatic and recommends 

taking n = 1.41 [1]. In works [2, 3], the authors also accept the law of compression-

expansion of air in the damper as adiabatic, and other researchers [5,6,7] accept n=1.0, 

assuming that the process of compression-expansion of air in the damper is isothermal. At 

the same time, it is stated in [9, 10, 11] that air compression and expansion in the damper 

proceeds according to the polytropic law. However, the latter provision requires further 

elaboration. Therefore, the rationale for the correct choice of the numerical value of the 

polytropic index for calculating the damper during water hammer is very important [4, 12-

15] since the reliability of determining the main economic dimensions of the damper, as 

well as the minimum and maximum pressure in it, depends on this [16-20]. 

In this paper, the law of change in the air volume in the damper is adopted as a 

polytropic process, and the value of the polytropic index n=1.2 is experimentally 

substantiated in [3, 4]. 
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Fig. 1. The change in pressure in the pressure pipeline during steady motion (a) and the change in 

pressure at the pneumohydraulic damper during hydraulic shock (b): 1 is source of water; 2 is suction 

pipeline; 3 is pump; 4 is check valve; 5 is damper; 6 is pressure pipeline; 7 is head basin. 

 

In equation (1), as usual [3, 4, 6, 7], the term containing the convective acceleration is 

neglected due to its smallness. Then for τnu=λnuρϑ
2
/8 and R=D/4, it turns out 
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Where λnu is coefficient of hydraulic resistance during hydraulic shock; D is diameter of the 

pressure pipeline. 

In the case of a one-dimensional fluid flow in a pressure pipeline 
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The partial derivative ∂H/∂x is approximately replaced by the increment ratio ∆H/∆l, where 

∆H=H-H0-a=Z is the change in the head during hydraulic shock relative to the geodetic head 

(see Fig. 1); ∆l=l2-l1 is the length of the pressure pipeline under consideration. 

Taking into account the above, equation (4) can be written 
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hω - pressure loss along the length of the pressure pipeline during hydraulic shock (hω=αϑ
2
) 

[3, 4, 6, 7]. 

The plus sign in front of the second term on the right side of equation (6) corresponds to 

the water flow in the positive direction of the x-axis (in Fig. 1 from the pump to the 

pressure basin), and the minus sign corresponds to the water movement in the opposite 

direction. 

To integrate the system of equations (2), (3), and (6), all parameters included in them 

are presented in dimensionless quantities [3, 4, 6, 7]: 
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then dϑ=ϑ0d , tTddt   and 11 VdVdV Г , 

where ϑ0 is steady flow velocity of the fluid in the pressure pipeline. 

The oscillation period of the pressure in the damper T can be calculated by taking into 

account the polytropic process by the formula [3,4] 
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Where ω is cross-sectional area of the pressure pipeline; σ is characteristic parameter of the 

damper, which is determined by the formula [3, 4, 6, 7]. 
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Taking into account the above equation (2), we can write 

 

dtdV 1,81      (9) 

 

Accordingly, equation (3) takes the form [3, 4, 6, 7]: 
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In equation (3) denoted 
ГVVV /  and H=H0-a+z. 

Equation (6), after some mathematical transformations, can be written in the following 

form 
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    (11) 

 

Head losses during unsteady fluid motion are expressed in terms of losses in a steady state, 

while it is assumed that λnu=λ, as proved in [6, 7], where λ is the coefficient of hydraulic 

resistance in a steady state. 
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where hтр0 and 0трh  are head losses and dimensionless head losses in steady state. 

The pressure spent on hydraulic resistance, known [3, 4, 6, 7], is not completely restored 

during hydraulic shock. Given this circumstance 
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where η is coefficient taking into account the restoration of pressure losses (η=0.5÷0.7) 

[6,7]; 

 

0трn hh  . 

 

Taking into account equality (13), equation (11) takes the form 
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To simplify the integration of the system of equations (9), (10), and (14), the notation 

[3,4,6] is introduced: 
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Then equation (14) takes the form 
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Accordingly, equation (9) will be presented in the form 

 

tdNVd 1     (16) 

 

First, the first half of the period of the pressure change process is considered, at which, after 

the pump is turned off, water by inertia continues to flow from the pump to the pressure 

basin (see Fig. 1). No new portions of water enter the pipeline, so the pressure in it and the 

damper decreases. Water from the damper partially flows into the pipeline and reduces the 

pressure drop while the air in the damper expands. In the mathematical analysis of this 

process in equation (6), the second term on the right side is preceded by a plus sign, and in 

equation (15), respectively, by a minus sign. Then from equation (15), it follows 
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Or 

 

  11   MLCtLLMarth    (17) 

 

where C is constant of integration. 

Equality (17) was obtained under condition 1 ML , but it can be proved that the final 

formula for determining  , derived below, is also valid for 
1 ML . Equation (17) 

implies 

 

  11   MLCtLthML     (18) 
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Initial conditions: t =0, ϑ=ϑ0, i.e.  =1, 

Then 11  LMarthLMC . 

Where 
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After transformations, formula (19) has the form 
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Expression (20) is substituted into equation (16), which, after integration rewritten as 
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where indicated 

 

  LMteMLMLK 211 11      (22) 

 

C1 is constant of integration. 

Initial conditions for determining C1: 

for t =0, 1V =0 and K=2 1ML , then from (21) it follows 
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Expression (23) is substituted into equation (21), which after transformation, takes the form 
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To determine the point in time t  at which the maximum increase in volume 1V  occurs, the 

derivative tdVd 1  is calculated and equal to zero, i.e., 
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Formula (26) is substituted into (24), resulting in 
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Since the value of M is always negative when the pressure drops, the increase in air volume 

in the damper 1V  is always positive. 

The total air volume in the damper is determined by the formula (10); in this formula 

11 VV  , since V=VГ+V1. 

Then formula (10) takes the form 
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since трhLN 2  and zhLM тр1 . 

Under these conditions, equation (29) takes the final form 
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3 Results and Discussion 

The joint solution of equations (8), (28), and (30) makes it possible to determine the head 

drop aHzz  0min  and the minimum absolute head Hmin=H0-a-zmin (see Fig. 1), as well as 

the maximum air volume in the damper V=Vmax. However, this solution is somewhat 

difficult since the value z  enters equation (30) in an implicit form. 

During the second half of the pressure change period, the liquid flows from the head basin 

to the pump and compresses the air in the damper (see Fig. 1). In this case, as indicated 

above, the plus sign is put in equation (15), and after integration, it takes the form 

 

 
 

tdL
ML

d

1
2



  

or 

2
1

1 CtL
ML

arctgLM 


      (31) 

 

C2 is constant of integration. 

It was indicated above that at the maximum increment of the air volume in the damper, i.e., 

at ϑ=0, the time t  is determined by the formula (26). After substitution into equation (31) 

 =0 and t , determined from (26), it turns out 
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Expression (32) is substituted into (31), then 
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Where 
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The last equality is substituted into equation (16), which after integration, takes the form 
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where C3 is integration constant; 

At 1V =0, the flow velocity is directed towards the pumping unit, i.e., 

ϑ=-ϑ0 and  =-1, then from equation (33), it turns out 
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To determine C3, the following are substituted into equation (35): 

1V =0 and time t  calculated by the formula (36), then 
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The last expression is substituted into equation (35), therefore, 
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The maximum increment of volume 1V , and hence the minimum volume of air into the 

dampers, occurs at time t , calculated from the expression 
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Under these conditions, from equality (38), after transformations, we obtain 
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Since L+M>M and   1ln  MML  are always positive; therefore, the volume increment 

of 1V  is always negative. 

Formula (40) is substituted into equation (28), resulting in 
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or taking into account the accepted notation 
 

   (42) 

 

With a joint solution of the obtained equations (8), (28), and (42), it is possible to determine 

the increase in head aHzz  01max , the maximum absolute head Hmax=H0-a+zmax (see Fig. 

1), as well as the minimum air volume in the damper V=Vmin. 

The results of analytical calculations and experiments of the pneumohydraulic damper [3,4] 

are shown in Table 1. According to Table 1, graphs for comparing the results of 

experiments and calculations were plotted (Fig. 2). 

Table 1. Results of research and calculation of pneumohydraulic damper 

S/n 

Initial data and results of experiments on the study of the damper 

ϑ0, m/s Hoa, m Hgа, m W0, m
3 σ  /  

1 1.42 51.5 

40.0 

0.0142 0.174 0.288 0.3150 

      0.3375 

2 1.92 59.7 0.0074 0.607 0.492 0.5325 

      0.6825 

3 1.43 51.2 0.0074 0.336 0.280 0.4650 

      0.5750 

4 0.78 43.5 0.0074 0.100 0.088 0.3400 

      0.3575 

5 0.75 43.3 0.0074 0.092 0.082 0.2975 

      0.2675 

6 1.18 47.7 0.0074 0.229 0.192 0.3700 

      0.3450 

7 1.51 52.7 0.0074 0.375 0.318 0.4175 

      0.4000 

8 1.92 59.9 0.0074 0.607 0.498 0.4575 

      0.4325 

9 1.84 58.5 0.0211 0.196 0.462 0.1950 

      0.1550 

10 1.48 52.5 0.0211 0.127 0.312 0.1950 

      0.1325 

11 0.80 44.1 0.0211 0.037 0.102 0.1750 

      0.1100 

12 0.74 43.5 0.0140 0.048 0.088 0.2225 

      0.1575 
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Continuation of table № 1. 

S/n 

The results of the calculation of the pneumohydraulic damper 

According to V.S. Dikarevsky n = 1.0 By author n = 1.2 

 ̅   
     ̅   

    ⁄  % mistakes  ̅   
     ̅   

    ⁄  % mistakes 

1 0.2919 17.33 0.3286 - 4.32 

 0.2728 + 19.17 0.3197 + 5.27 

2 0.4690 + 11.92 0.5199 + 2.37 

 0.6339 + 7.12 0.7436 - 8.95 

3 0.4103 + 11.76 0.4550 + 2.15 

 0.5251 + 8.68 0.6103 - 6.14 

4 0.2914 + 14.29 0.3225 + 5.15 

 0.3398 + 4.95 0.3875 - 8.39 

5 0.2579 + 13.31 0.2877 + 3.29 

 0.2494 + 6.77 0.2880 - 7.55 

6 0.3282 + 11.30 0.3679 + 0.57 

 0.3192 + 7.48 0.3741 - 8.43 

7 0.3613 + 13.46 0.4065 + 2.63 

 0.3484 + 12.90 0.4117 - 2.92 

8 0.3920 + 14.32 0.4422 + 3.34 

 0.3756 + 13.16 0.4469 - 3.33 

9 0.1815 + 6.92 0.2138 - 9.64 

 0.1218 + 21.42 0.1466 + 5.42 

10 0.1743 + 10.62 0.2036 - 4.41 

 0.1180 + 10.94 0.1412 - 6.57 

11 0.1396 + 20.23 0.1596 + 8.80 

 0.0985 + 10.45 0.1157 - 5.18 

12 0.1768 + 20.54 0.1996 + 10.29 

 0.1392 + 11.62 0.1622 - 2.98 

 

An analysis of the data in Table 1 and the graph in Fig. 2 shows that the proposed method 

for calculating the damper is reliable since the proposed method's calculations give good 

convergence with the results of experiments. 

 

  

Fig. 2. Comparison of damper calculations with experimental data 

 

The data of Table 1 and the graphs in Fig. 2 also confirm that the polytropic index's value 

should be equal to n = 1.2 since, in this case, there is some margin of safety in the 

calculations than with n = 1.0. This provision provides resource saving. To check the 

reliability of the above dependencies (8), (28), and (42), comparative calculations were 

performed with the results of experimental data (Table 1). The experiments were carried 

out in the laboratory of the department "Hydraulics and hydraulic structures" KEEI [3,4]. 
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4 Conclusions 

As a result of integrating the equations of unsteady fluid motion, analytical dependences are 

obtained, which make it possible to determine the parameters of the pneumohydraulic 

damper with wide variations in the initial parameters. 

The value of the polytropic index [3,4] was experimentally determined, and it was 

recommended to take n = 1.20 when calculating the pneumohydraulic damper. 

The results of the experimental studies have proved the reliability of the proposed 

analytical method for calculating the pneumohydraulic damper installed at the beginning of 

the pressure pipeline of the pumping station. 
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