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Abstract. In this article, a specific problem of pulsating flow of visco-
elastic fluids in a flat channel in a stationary state was solved. The main 
goal is to study the movement of visco-elastic fluids based on simplified 

mathematical models and to determine the existing hydrodynamic laws and 
hydrodynamic effects in the pulsating flow of a Newtonian fluid based on 
the obtained results. 

1 Introduction 

Stationary oscillating (pulsating) flows, in which transient processes occur in the flow of 

liquids, are particularly interesting in science, technical and technological processes. In 

such processes, even if the fluid movement occurs in a stationary mode due to the presence 

of oscillatory motion, the considered process consists of a periodic function of time. In this 

case, it is considered that the fluid fluctuations occur in the same state in each period. 
Therefore, when solving fluid flow problems, periodic functions of time can be used, which 

makes it much easier to solve a system of differential equations. Many scientific and 

practical studies have been devoted to the pulsating flows of Newtonian fluids in flat 

channels and cylindrical pipes by domestic and foreign scientists. In particular, in research 

studies [1-7], the stationary oscillation flows of pulsating viscous fluids in channels and 

pipes have been sufficiently studied. Scientific research on the pulsating flow of viscous 

fluids was applied to the circulatory system of biomechanics [8-12]. In this area, the 

research works conducted by applying the generalized topological models of Shulman-

Khusid [13-20] to the pulsating flow of visco-elastic fluids are insufficient. It is known that 

the generalized topological models of Shulman-Husid play an important role in 

characterizing the pulsating behavior of polymer fluids, turbid water mixtures, and other 
similar fluids [21-24]. 

2 Methods 

In formulating the problem, the distance between the walls of a flat channel is defined as 

h2 , and the length of the channel is defined as L. Here L is large enough that h/L=1, the 
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condition is satisfied. The flow is stabilized in such cases, and the transverse velocity value 

is found using the continuity equation. And channel axes are defined as follows: Axis x  is 

directed along the middle of the channel in a horizontal direction and is called the 

longitudinal axis, and the axis y is taken in a vertical direction perpendicular to the axis 

x  and is referred to as the vertical axis. The mathematical model of the problem is as 

follows: 
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Since the pulsating flows of visco-elastic liquids are considered at small deformations of 

liquid particles, functions 
kf and 

kg  can be taken as invariant 1kf  , 1kg 
 
based 

on the work [10-12]. Then equations (1) can be expressed in form (2) by performing 

mathematical operations: 
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  (2) 

 

Since the flow is symmetrical about the longitudinal axis of the flat channel, the 
boundary conditions are formulated as follows: 
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Solving the resulting system of equations (2) using boundary conditions (3), we 

express the solution by changing the form as follows: 
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The found formulas (4) and (5) represent the formulas for finding the pressure and 

averaged velocities of the fluid along the longitudinal axis in a flat channel with a 

permeable wall, respectively. By analyzing the characteristics of the magnitude in the 

argument of the hyperbolic sine and hyperbolic cosine functions in these formulas, it is 

possible to determine the propagation speed of pulse waves and their attenuation along 
the longitudinal axis. From the found solutions (4) and (5), the formula defining the 

distribution law of the longitudinal velocity profile in the pulsating flow of a Newtonian 

fluid is derived. For this, it is sufficient to set the relaxation coefficient in a visco-elastic 

fluid equal to zero. 

To obtain calculation results using the found formulas (4) and (5), one begins by 

analyzing the characteristics of the quantities in the argument of the hyperbolic sine and 

hyperbolic cosine functions. It is known that these quantities are one of the main factors 

of wave propagation. With the help of these arguments, it was noted above that it is 

possible to determine the propagation speed of pulse waves and its attenuation along the 

longitudinal axis. Taking this into account, below, we present the analysis results of 

these quantities for a Newtonian fluid. The found formulas (4) and (5) express the 
change of pressure and velocity along the longitudinal axis, and since these formulas 

mainly depend on the complex parameter 
0k z L , expressing it in this form: 

 

0 .k z L i      (6) 

 

We distinguish the real and abstract parts of 0z  as follows: 
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Now, putting the value of 0z
 
and k  into formula 

0k z L i   , ,   is found: 
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From this formula, ,   is found accordingly. That is 
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Here,   is a dimensionless coefficient that determines the attenuation of the wave along 

the length; 1/  – ox is a dimensionless quantity characterizing the propagation speed of 

the pulse wave along the axis.  

3 Results and Discussion 

The propagation speed of the pulse wave is determined by the following formula 

/с L  . From this formula, the dimensionless form of the propagation speed of the 

pulse wave is found as follows: 
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Here 
0

5 /c h   is the base pulse wave propagation speed. 

Based on the formula (7) determined as a result of solving the problem, the propagation 

speed of the pulse wave depending on the vibration frequency parameter, is depicted in 

Figure 1. 
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Fig. 1. Variation of pulse wave propagation speed at different values of wall permeability coefficient 

*  depending on vibration frequency parameter 1-0.01; 2-0.02; 3; 0.05; 4-0.1;5-0.5 

 

The variation of the magnitude, which is the inverse of the magnitude of the wave 

attenuation obtained concerning the wavelength, depending on the parameter of the 

oscillation frequency, is determined by the following formula: ln p
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This formula above represents the inverse of the magnitude of the wave attenuation 

taken concerning the wavelength. 
 

 

Fig. 2. Variation of magnitude, which is inverse of magnitude of wave attenuation obtained 
concerning wavelength, as function of oscillation frequency parameter. 
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4 Conclusions 

Figure 1 shows the pulse wave propagation speed variation depending on the vibration 

frequency parameter. At sufficiently small values of the vibration frequency parameter, it 

was found that the propagation velocity of the pulse wave can be found by formula 

0
5 /c h , and this formula was adopted as the formula representing the propagation 

velocity of the base pulse wave. It is shown in the figure that the propagation speed of the 

pulse wave does not significantly differ from the propagation speed of the base pulse wave 

at small values of the vibration frequency parameter. At large values of the vibration 

frequency parameter, the propagation speed of the pulse wave is significantly different from 

the base speed, and its increase ensures an increase in the propagation speed of the pulse 

wave. 
It can be seen from Fig. 2. that at small values of the vibration frequency parameter, 

wave extinction almost does not occur, while at its large values, the wave extinction index 

increases significantly. Although the variation of the magnitude, which is inverse to the 

magnitude of the wave attenuation obtained concerning the wavelength, depending on the 

oscillation frequency parameter, is caused by the wall permeability coefficient, it is almost 

independent of its variation. 
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