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Abstract. The transition problems from one mode of steady flow to 
another in a pipeline with a constant gradient are considered. The pressure 
value is set at the inlet to the section, and an air chamber of a certain 
volume is installed at the outlet. Modeling of the process of compression 
shock wave propagation in an elementary section of the pipeline was 
conducted according to the linearized quasi-one-dimensional N.E. 
Zhukovskymodel, and the damper was considered according to the I.A. 

Charny model. The problem is solved by the method of separation of 
variables. It is shown that at an increase in the volume of the damper, the 
amplitude and frequency of perturbations decrease due to the transient 
process. 

1 Introduction 

Shock wave often occurs in nature and technology and can have a positive or negative 

effect [1-6]. Its positive effect is used in the work of an air hammer. Multiple repetitions of 

the shock wave impact can lead to the gradual destruction of equipment since it initiates 

vibrations of different amplitude and frequencies of excitations. With the rapid closing of 

the free section of horizontal or inclined pipelines, large pressure surges can form due to the 

transition of the kinetic energy of the conveyed medium to the potential energy of 
compression [7-11]. 

N.E. Zhukovsky obtained the first theoretical and experimental results on the nature of a 

shock wave in pipelines. His research considered the low compressibility of the conveyed 

fluid and the deformation of the thin wall of the pipeline under the influence of a shock 

wave [12]. A quasi-one-dimensional mathematical model of pipeline transportation of 

fluids and gases under conditions of compaction shockwave propagation is widely used in 

solving scientific and practical problems. 

Various analytical and numerical methods were developed for solving complete or 

reduced options of linear and nonlinear quasi-one-dimensional equations of pipelines 

transporting compressible or low-compressible media [12-19]. The analysis showed that 

few publications are devoted to studying changes in the fluid momentum in inclined 
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pipelines. In this article, the slope of the pipeline is assumed to be constant. In addition, the 

momentum conservation equation considers the local component of the fluid inertia force 

and the drag force according to the Darcy-Weisbach formula. The continuity equation 

represents the propagation velocity of small pressure disturbances in the “pipe-fluid” 

medium. 

A pressure value is set at the section inlet, and an air chamber is installed at the outlet. A 

method for considering the damper in the boundary condition, according to I.A. Charny 

[12], is shown. 

The linearized equation of momentum conservation and transfer is solved by the Fourier 

method. By substituting the found velocity value into the initial equations, the equations for 

hydrostatic pressure are derived and integrated. 
Numerical results are presented for individual options of the compaction shock wave 

propagation process. 

The purpose of the problem is to study the dynamic state of an elementary section of the 

pipeline during the transition from one velocity mode to another. A pipeline of length l and 

diameter 0 .D is considered. The slope of the pipeline route sin  is constant. The initial 

condition for the velocity is: 

 

  0,0w x w const  . 

 

The initial pressure distribution takes into account the inlet pressure
00

p , the difference in 

pressure due to friction and gravity: 

 

   00 0,0 2 sinp x p aw g x    . 

 

Here *2 ; sin ;
2

w dy
a const

D dx


    –is the drag coefficient; *w  is the characteristic 

velocity of the object under consideration (in this case, the averaging parameter); ( )y x is the 

leveling height of the pipeline axis. 

The following value of pressure is set at the inlet: 

 

  000,p t p const  . 

 

The intensity of fluid withdrawal from the end of the section at 0t   is    3 / .Q t m s An 

air chamber is installed in front of the exit from the section. In the unperturbed state, the gas 

volume and pressure in the air chamber are 0V and 0p . This boundary condition, which 

reflects the installation of the air chamber, is formulated according to I.A. Charny [12]. 

In front of the air chamber, the volumetric flow rate of the liquid is  
x l

fw


, where

2 / 4f D  is the cross-sectional area and D is the diameter of the pipeline. At the exit, as 

already noted, the flow rate is  Q t . The difference leads to a change in the volume of gas 

in the air chamber over time: 
 

   
x l

dy
fw Q t

dx 
  . 
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When changing the volume of the liquid, the change in the gas temperature can be ignored. 

Therefore, the new state of air p  and 0V y satisfy the following condition: 

 

 0 0 0p V p V y  . 

 

The new pressure value in the air chamber is 

 

0 0

0

p V
p

V y



. 

 

Since the change in y  is small  0y V , we can assume that 

 

0
0

0 0

1
1 /

p y
p p

y V V

 
   

  
. 

 

From here we find 0

0

0 V
p

pp
y




 

and 

 

dt

dp

p

V

dt

dy

0

0
. 

 

Equating the right sides of two equalities for 
dy

dt
, we obtain the following condition at 

the exit from the section: 

 

   0

0

x l

x l

V dp
fw Q t

p dt




  . 

 

We model the equations of state of the section based on the N.E. Zhukovskyequations 

with correction, considering the force of gravity [12]: 

 

2

2 sin ,

.

p w
aw g

x t

p w
c

t x

 



   
     
   


  
  

 

 

Here
1/2

2 0 0
D

c
k E

 





 
  
 

 is the propagation velocity of small perturbations in the “fluid-

pipe” system; 
0

 , k  are the density of the fluid at rest and its modulus of elasticity; ,E 

are the Young modulus of the pipeline material and the thickness of the pipe  .D   

Since 
p

t




 can be expressed according to the second equation of the system, the second 

boundary condition of velocity w  takes the following form: 
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( , )
( , ) .

A

w l t
w l t w

t



  


 

 

When the damper is disabled, this condition becomes a condition of the first kind

 , Aw l t w . Here and below, notation 
2

0

0

сV

fp


  is used. 

In general, such a problem statement differs from other problems in that both the slope 

of the route and the presence of a damper at the end of the section are simultaneously 

considered. 

2 Methods  

Let us single out the solution to the problem concerning velocity. The following conditions 

are valid: 

00

( ,0)w x w ,   
( ,0)

0
w x

t





, 

 0,
0

w t

x





,  

 
 

,
, A

w l t
w l t w

x



 


 

 

where we confine ourselves to considering the case when the new rate at the exit from the 

section is Aw . 

From the original system, the telegraph equation is derived [13-14]: 

 
2 2

2

2 2
2

w w w
a c

tt x

  
 

 
. 

 

To apply the Fourier method, the boundary conditions of the problem must be reduced 

to a homogeneous form. In our case, this is possible if we accept the following replacement 

 

   , , Au x t w x t w  . 

 

In this case, the equations, initial conditions, and the first boundary condition are 

written in terms of  ,u x t , and the second boundary condition acquires a homogeneous 

form: 

 

 
 

, 1
, 0

u l t
u l t

x 


 


. 

 

The solution to  ,u x t is sought in the following form: 

 

     ,u x t X x Y t . 

 

Then, according to the rules of the Fourier method [13-14], we obtain 
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2

2Y t aY t X x

Y t X x


  
   . 

 

Here 0  , otherwise, we obtain a trivial (zero) solution to the problem. 

Let us make an autonomous equation for  X x : 

 

   2 0X x X x   . 

 

Its solution is sought in the form 

 

  sin cosX x B x C x   . 

 

The implementation of the boundary conditions leads to partial eigenfunctions: 

 

  cosn nX x x  

 

where the eigenvalues n of the problem are the positive roots of the characteristic equation 

 

1
ntg l


 . 

 

Theorthonormalityofeigenfunctions  nX x was proved: 

 

   
2

2

0

1
sin ,

sin sin 2

0 .

l
n n

n m

X x l l n m
x xdx

n

fo

f m

r

or

 
 


  

 
 


 

 

The search for eigenfunctions in time led to the following equation: 

 

     2 22 0n n n nY t aY t c Y t    . 

 

The characteristic equation of the second-order differential equation is: 

 
2 2 22 0n n ns as c    . 

 

With 2 2 2

n nD a c   , we obtain 

 

 
1,2n ns a D   . 

Here we have: 
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0,

0,

cos sin 0.

at

n n n n n

at

n n n n

at

n n n n n

e A ch D

o

t B sh D t D

Y

B

for

t e A B t D

e oA D t D t D

f r

f r







  



  


 
  

 

Thus, the solution  ,u x t is 

 

 

 
 

 
2

1

0

sin
, 0 cos .

cos sin 0

at

n n n n n

atn
n n n n

n
n n

at

n n n n n

e A ch D t B sh D t D

l
u t

for

for

for

x t e A B D x
X

e A D t B D t D














  
 
   
 
 

   



 
 

In a partial case as 0  (i.е. as 0 0V  ) under condition  0 0nX   , the eigenfunctionsare

  cosn nX x x  for
2 1

2
n

n

l





  [7]. At the same time, it is assumed that  

2

2
n

l
X l   

For 0  , the eigenvalues of n are found by numerically solving the characteristic 

equation. First, we singled out the boundary of the membership interval of the n -th root

   1 0,5nn n      . Then, the values of nl were refined by the dichotomy method 

[20]. Here, the largest number of approximation steps 42 was sufficient to ensure the 

calculation accuracy n up to
1010

for 1000l  m. 

To determine the hydrostatic pressure, the second equation of the original system was 

integrated over time from 0 to t : 

 

   
 2

0

,
, ,0

t w x
p x t p x c d

x


 


 


 . 

 

The minuend is known from the initial condition. The subtrahend 

 is calculated from the newly obtained expression for  ,w x t . Omitting details, the result 

has the following form 

 

     
 

 
 

 

00 00 0 2
1

sin
, 2 sin

0

0 sin .

cos sin 0

n
A

n
n n

at

n n n n n

at

n n n n

at

n n n n n

l
p x t p aw g x w w

X x

e A ch Dfor

B

for

f

D t B sh D t

e A B t D x

e DoA t D t rD


  















     

  
 
   
 
 

   



 
 

3 Results and Discussion  

Based on the presented material, a calculation program was compiled in the Pascal ABC 

environment and the results were presented in tables. Graphs were plotted using the Excel-

2003 program. The characteristic equation was solved by the dichotomy method with an 
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accuracy of 910 . The calculations considered the first 500 first terms of the Fourier series. 

The step along the length of the section was / 50l , and the time step was  / 10l c . The 

calculation was conducted from the 0th to the 600th time step. 

Cases sin 0,  0.1 were considered at a section length of 1000 m. The section 

diameter was 20 cm, and the drag coefficient 0.018  . The averaging parameter had the 

value of 5 /w m s  , the density of the fluid in the undisturbed state was 31000.0 /kg m , 

and the propagation velocity of small perturbations of pressure was 0 /12 0 m sс   . 

The volume of the air chamber connected to the end of the section was taken as 1.0, 0.1, 

0.001, 0.0001, and 0.00001 cubic meters. The pressure in the air chamber without stress 

was 0 0,1p MPa . 

Let us dwell on the results obtained for a horizontal pipeline for 3

0 0.001V m . 

Figure 1 shows the velocity graphs from the 0th to the 10th time step, during which the 
perturbation wave runs from the end of the section to its beginning (the conditional half-

cycle is /l c  ). 

At the initial time, the velocity is zero. When the outlet end is opened, the velocity at the 

end of the section gradually increases, and the disturbance moves toward the inlet chamber. 

This is due to the presence of an air chamber. In the absence of an air chamber, an 

instantaneous increase in velocity up to Aw is expected, and the leading edge makes a surge. 

At t  , the wave reaches the entrance section (the upper curve in Fig. 1 and the lower 

curve in Fig. 2). 
 

 
Fig. 1. Velocity profiles at 0-10th time points with  / 10l c  step. See data in text. 
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Fig. 2. Velocity profiles at 10-20th time points with  / 10l c  step. See data in text. 

 

 
Fig. 3. Velocity profiles for 2 / 3 /l c t l c  with  / 10l c step. 

 

In the inlet section, the condition of pressure constancy   000, .p t p const  is imposed. In 

connection with this, the velocity disturbances reaching the inlet section lead to an increase 

in the departure of the disturbance velocity back toward the end of the section. The curve 

 ,w x  practically constitutes a conditional envelope of the velocity curves in the 

considered time interval  / ; 2 /l c l c . The conditionality lies in the fact that the parts of the 

curve  ,w x t and the velocity profiles in the sections that the wave has not reached yet 

differ somewhat from each other. 

Comparing these results with the case for 0  and 0 0V   [7], when  0, 2 Aw t w , we 

note that in this case, the velocity does not even reach 8 /m s  2 Aw .  
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In the third conditional half-cycle, when the wave reaches the end of the section with a 

damper and returns to the beginning of the section, the increase in velocity  ,w l t occurs 

only at the 24th time step, and then it decreases. This is due to the air chamber. 

Over time, discontinuities of the second kind (derivatives of the function) at the front of 

the shock wave occur, and the velocity field gradually passes to a uniform distribution. At 

500 /t l c , the maximum deviation of the velocity from Aw is 0.001. 

According to the presented quasi-one-dimensional N.E. Zhukovsky model, the pressure 

gradient is proportional to the flow rate and considers friction forces. In this regard, in the 

first half-cycle, the pressure begins to drop at the end of the section, and these perturbations 

propagate against the direction of the x -axis (Fig. 4). In contrast to the case for 0  and

0 0V  ,  in this case, smoother pressure curves are formed. However, discontinuities of the 

second kind are evident at the wavefront. 

 

 

Fig. 4. Pressure distribution in first half-cycle with  / 10l c  time step.
 

 
The analysis showed that the discontinuities of the derivatives at the wavefront obey the 

Hugoniot relation for the total head [21]: a positive jump in the pressure derivative 

corresponds to a negative jump in the derivative w . In our case, this relation has the form

2

w
p const

   . It is also fulfilled when the wave is reflected from the ends of the 

section. 

Over time, jumps in pressure derivatives, as well as jumps in velocity derivatives, 

gradually decrease, and the process becomes a steady state one (Fig. 5). 
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Fig. 5. Interval of pressure change along section length in 40th half-cycle. 

 

Figures 6 and 7 show the changes in velocity and pressure in the sections for 3

0 0.001V m . 

It is seen from the figures that as t  , the velocity tends to its limit value 
A

w , and the 

pressure tends to its value in sections x according to the solution of the stationary problem 

for 0 5 /w m s  and 00 .6.5p MPa In this case, a linear pressure drop along the length of 

the section is clearly expressed: as t   at an increase in distance, the pressure decreases 

linearly. 

 

 
Fig. 6. Change in velocity over time in different sections. 3

0
0.001V m

 
 

From these graphs follows the presence of double extremes in half-periods, the nature of 
which should be substantiated in the future. 

5

5,5

6

6,5

7

0 200 400 600 800 1000
x, m

0.1p(x,ti), MPa

400 401 402 403 404 405

406 407 408 409 410

0

2

4

6

8

10

12

0 10 20 30 40 50t, sek

w(xi,t), m/sek

0 200 400 1000

E3S Web of Conferences 401, 01045 (2023)

CONMECHYDRO - 2023
https://doi.org/10.1051/e3sconf/202340101045

10



 

Fig. 7. Change in pressure over time in different sections for 3

0
0.001V m , 

00
6.5p MPa . 

 

 

Fig. 8. Temporary change in exit velocity at different volumes of air chamber
0

V  ( 3m ) 

 

Figure 8 shows the changes in the velocity value at the end of the section for various values 

of the volume of the air chamber. The lower graphs reflect the end velocities at 
3

0 1.000V m . These graphs are not finished since later they pass to the value of Aw . At 

large volumes of air chambers, steadying is slow. It can be seen that at the end of the 

section where the air chamber is installed, the amplitude of the disturbances is lower than in 

the inlet section despite the high difference at this end. 

Graphs at 3

0 0.1V m  first increase from 0 to 5 /m s , and then the oscillatory process is 

damped. Two conditional maximums are clearly visible in the graphs. 

More than three conditional maxima were observed in the graphs at 3

0 0.00100V m . 

As the damper volume decreases, the amplitude of velocity and pressure perturbations at 

the ends of the section increases, and the frequencies of the perturbations increase. 
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4 Conclusions 

With an account for the air chamber installed at the end of the section, a mathematical 

model of the state of elementary inclined and horizontal sections of the pipeline is compiled 

when a constant pressure value is set at the inlet to the section. 

The solution to the problem concerning velocity was obtained by the Fourier method, 

and the solution concerning pressure was determined by integrating the continuity equation. 

The results of calculations obtained for a horizontal section for various values of the air 

chamber volume were discussed. It was determined that at a large volume of the air 

chamber, the transition from one mode of operation to another mode proceeds smoothly. 

With a decrease in the volume of the air chamber, velocity and pressure perturbations are 

formed due to the initiation and propagation of a compression shock wave. The frequency 
and amplitude of the disturbances increase as the volume in the air chamber decreases. 

Based on the presented material, it can be concluded that for a given value of inlet 

pressure, it is possible to determine the volume of the air chamber, which ensures a smooth 

transition from one mode of operation in terms of flow rate to another mode. 
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