Correction of ted field weakening switching diagram for mainline diesel locomotives of te type

A. T. Djanikulov*, and U. I. Safarov
Tashkent State Transport University, Tashkent, Uzbekistan

Abstract

The processes are considered when the stages of weakening of the TED magnetic field are switched on on diesel locomotives of the TE10 type. The analysis of the unstable operation and automatic switching on of the transition relay at partial loads corresponding to the locomotive's speed at the rated load in operation is carried out. TED current algorithms are proposed for correcting the scheme for switching on the relay of transitions from a full field to a weakened field. A variant of the correction circuit is proposed to check its operation during operation. This principle has been violated since the creation of the TE10 diesel locomotive. It is still violated on TE10 diesel locomotives, except for diesel locomotives equipped with the USTA system.

1 Introduction

During the commissioning of diesel locomotives with a capacity of 2000 kW , there were many claims from the operation for the unstable operation of the TED excitation attenuation relay that controlled the activation of the contactors VSH1 and VSH2 for excitation of traction motors (TED).

The main one was the inconsistency of direct switching from the full field (FS) to the weakened field of the first stage (OP1) and from the weakened field OP1 to the weakened field of the second stage (OP2), tuned in rheostat tests at the maximum load of the DGU, at partial loads, i.e., e. lower positions of the regulator [1-3].

For a long time, many researchers and organizations have been developing such developments as systems with non-contact relays, a system with speed control from sensors installed on the wheelset axle, the circuit for switching on the current coils of the relay transitions to the driving winding of the amplifier and the output of the node for extracting the maximum signal from the current transformers; the inclusion of current coils of relay transitions in the amplistat control winding has been changed [4-5]. But all efforts did not reach the main goal - automatic switching on of transient relays at partial loads, corresponding to the locomotive's speed at rated load. The exception was a system using non-contact transfer relays, but it was not accepted because of the complexity because it was included in the selective node [6]. Therefore, based on the study of the experience of

[^0]previous developments, the tasks were set to find a solution that would eliminate this problem.

Disadvantage - the lower the load of the DGU, the faster the direct switching of the FS AF1 and AF1 AF2 [7-9].

An analysis of the operation of diesel locomotives 2TEI16 and type TE10 over many years has shown that the stage switching system is often unstable [10-11]. The main reason is the converging (non-parallel) lines of the switching diagram, which, in turn, are due to the converging lines of switching on and off the transition relay RD-3010.

The unstable operation of the switching system has been noted in numerous publications for many years [12-14].

The unstable factor of the switching diagram is:

- untimely switching on and off, inconsistent with the calculated points of the locomotive traction characteristic, traction force - speed;
- lack of inclusion or deactivation;
- burning of power contacts of contactors of weakening of excitation;
- "ringing work" RPI and RP2.

The switching diagram reflects the complexity of a diesel locomotive's dynamic electric transmission system with an essentially non-linear (relay) characteristic. The term "ringing work" means "self-oscillations" in the control system.

Previously [3], attention was drawn to the systematic tendency of the switching control system to self-oscillations and misalignments, i.e., untimely switching of relays RPI and RP2. Then statistical materials were collected on failures of the switching system [5].

The converging characteristics of the differential relay transition lead to the switching being carried out according to the principle: the smaller the position of the controller, there, at higher the speed, and direct switching occurs, which contradicts the conditions for implementing traction [5].

Direct switching is set during rheostat tests at the 15 th position of the controller at currents:

- FS \rightarrow AFI - 3I00 A;
- AFI \rightarrow AF2 - 2900 A.

Therefore, the switching lines $\mathrm{AFI} \rightarrow \mathrm{AF} 2$ at controller positions below $9 \div 10$ fall into the voltage limitation zone. The voltage does not increase, the power drops, the train does not accelerate, and the switching AFI \rightarrow AF2 does not occur.
Adjustment to lower currents is not performed due to the possibility of self-oscillations of the automatic control system ("ringing operation").
The analysis aims to find TED's current algorithms for correcting the switching diagram $\mathrm{PP} \rightleftarrows \mathrm{OP} 1$.
The following assumptions were made in the analysis:

- real TED are replaced by conditional ones [4]. This excludes the influence of other TEDs on the transition process;
- PC train contactors are on during the entire transient process (we exclude them from the scheme);
- All TEMs have the same electromechanical characteristics and winding parameters;
- magnetization curves of the traction generator and TED are approximated by two straight line segments [5];
- the degree of weakening of the TED magnetic flux is the same;
- pre-transition mode of locomotive operation at $t=0^{+}$stationary;
- the coefficient of dispersion of the magnetic flux remains constant [5].

2 Methods

Consider the equivalent circuit of the power circuit of a diesel locomotive when switching $\mathrm{FS} \rightleftarrows \mathrm{AF} 1$. Considering the accepted assumptions, the equivalent circuit of the studied transient processes is shown in Fig. 1.

Conditional TED winding parameters:

$$
R_{d u}=\frac{R_{r}}{n} ; \quad L_{d u}=\frac{L_{r}}{n}
$$

where: n is the number of parallel branches of TED; R_{r}, L_{r} are resistance and inductance of the corresponding winding of a real TED.
In the following, the indices " u " and " r " are omitted
Drawing up equations and their solution when switching FS \rightarrow AF1
Following the equations and their solutions, the equations of the studied transient process are compiled.

$$
\begin{gather*}
L_{g} \frac{d i_{1}}{d t}+R_{g} i_{1}+L_{d u} \frac{d i_{1}}{d t}+R_{d u} i_{1}+R_{s h} i_{3}=U_{g}-K_{d} i_{2}+K_{s h g} i_{1}-K_{s h d} i_{1} ; \\
L_{\mathrm{obd}} \frac{d i_{2}}{d t}+R_{\mathrm{obd}} i_{2}-R_{s h} i_{3}=0 ; \tag{1}\\
i_{1}-i_{2}-i_{3}=0,
\end{gather*}
$$

where: i_{1} is armature current and additional pole (DP) of TED; i_{2} is current of the excitation winding (OV) of the TED; i_{3} is current of the resistor of the shunting OB TED; $L_{d u}$ is armature inductance and DP TED; $L_{o b d}$ is OV TED inductance; L_{g} is the inductance of the armature and DP of the traction generator; $R_{d u}$ is resistance of the armature circuit and DP TED; R_{g} is resistance of the traction generator armature circuit; $R_{s h}$ is resistance of the resistor shunting the OB TED; $K_{d}=\frac{\Delta E_{d}}{\Delta i_{l}}$ is TED transfer coefficient; ΔE_{d} is increment of the counter emf of TED; $K_{\text {shd }}, K_{\text {shg }}$ are transfer coefficients of reaction of the TED armature and traction generator.

Fig. 1. Equivalent circuit of the power circuit of a diesel locomotive of the TE10 type when switching the FS to AF1 and AF2

Image of the system of equations according to Laplace:

$$
\begin{gather*}
P\left(L_{d u}+L_{g}\right) I_{1}(P)+\left(R_{g}+R_{d u}\right) I_{1}(P)+\left(K_{\text {shg }}-K_{\text {shd }}\right) I_{1}(P)+ \\
+K_{d} I_{2}(P)+R_{s h} I_{3}(P)=\frac{U_{g}}{P}+L_{d u} i_{1}(0)+L_{1} i_{1}(0) ; \tag{2}\\
P L_{o b d} I_{2}(P)+R_{o b d} I_{2}(P)-R_{s h} I_{3}(P)=L_{o b d} i_{2}(0) ; \\
I_{1}(P)-I_{2}(P)-I_{3}(P)=0,
\end{gather*}
$$

where $P=\frac{d}{d t}$
Determinant of the characteristic function of the system (2)

$$
D(p)=\left|\begin{array}{ccc}
P\left(L_{g}+L_{d u}\right)+\left(R_{g}+R_{d u}\right)+\left(K_{\text {shg }}-K_{\text {shd }}\right) ; & K_{d} ; & R_{s h} \tag{3}\\
0 ; & P L_{\mathrm{obd}}+R_{\mathrm{obd}} ; & -R_{s h} \\
1 & -1 & -1
\end{array}\right|
$$

Expanding the determinant $\mathrm{D}(\mathrm{p})$ and equating it to zero, we obtain the characteristic equation:

$$
\begin{equation*}
\mathrm{A} A p^{2}+B p+C=0 \tag{4}
\end{equation*}
$$

where $A=L_{o b d}\left(L_{d u}+L_{g}\right)$;

$$
\begin{gathered}
B=L_{\mathrm{obd}}\left(R_{g}+R_{d u}+R_{s h}\right)+\left(K_{s h g}-K_{s h d}\right)+\left(L_{g}+L_{d u}\right)\left(R_{\mathrm{obd}}+R_{s h}\right) ; \\
C=\left(R_{g}+R_{d u}+K_{s h g}-K_{s h d}\right)\left(R_{\mathrm{obd}}+R_{s h}\right)+R_{s h}\left(K_{d}-R_{\mathrm{obd}}\right) .
\end{gathered}
$$

Denote

$$
\begin{equation*}
\frac{B}{A}=2 a ; \quad \frac{C}{A}=\omega_{0}{ }^{2} . \tag{5}
\end{equation*}
$$

Then the characteristic equation will take the form:

$$
\begin{equation*}
p^{2}+2 a p+\omega_{0}^{2}=0 . \tag{6}
\end{equation*}
$$

The values $\mathcal{L}_{1}, \mathcal{L}_{2}$ are the roots of the characteristic equation

$$
\begin{equation*}
\mathcal{L}_{1}, \mathcal{L}_{2}=p_{1}, p_{2}=-a \pm \sqrt{a^{2}-\omega_{0}^{2}} \tag{7}
\end{equation*}
$$

will be determined by the values of the coefficients B and C. Since the value of the coefficient A cannot take negative values during the entire transient process.
Compose and calculate the determinant $\mathrm{D}_{\mathrm{I}} \mathrm{I}(\mathrm{P})$:

$$
D_{1}(\mathrm{P})=\left|\begin{array}{ccc}
\frac{U_{g}}{P}+L_{g} i_{1}(0)+L_{d u} i_{1}(0) & K_{d} & R_{s h} \tag{8}\\
L_{o b d} i_{2}(0) & P L_{o b d}+R_{o b d} & -R_{s h} \\
0 & -1 & -1
\end{array}\right|
$$

Its calculation gives:

$$
\begin{gather*}
D_{1}(\mathrm{P})=-\left[\frac{U_{g}}{P}+\left(L_{g}+L_{d u}\right) i_{1}(0)\right]\left(P L_{\mathrm{o} b d}+R_{\mathrm{obd}}\right)- \\
-L_{\mathrm{obd}} i_{2}(0)-\left[\frac{U_{g}}{P}+\left(L_{g}+L_{d u}\right) i_{1}(0)\right] R_{s h}+L_{\mathrm{obd}} i_{2}(0) K_{d}= \\
=K_{d} L_{\mathrm{o} b d} i_{2}(0)-U_{g} L_{\mathrm{o} b d}--\frac{U_{g} R_{\mathrm{ob} d}}{P}-P\left(L_{g}+L_{d u}\right) i_{1}(0) L_{\mathrm{o} b d}- \tag{9}
\end{gather*}
$$

$$
\begin{gathered}
-\left(L_{g}+L_{d u}\right) i_{1}(0) R_{\mathrm{obd}}-L_{\mathrm{obd}} i_{2}(0) R_{s h}-\frac{U_{g}}{P} R_{s h}-\left(L_{g}+L_{d u}\right) i_{1}(0) R_{s h}= \\
=K_{d} L_{\mathrm{obd}} i_{2}(0)-P\left(L_{g}+L_{d u}\right) i_{1}(0) L_{o b d}-\frac{U_{g}}{P}\left(R_{\mathrm{obd}}+R_{s h}\right)- \\
-U_{g} L_{\mathrm{obd}}-\left(L_{g}+L_{d u}\right) i_{1}(0) R_{\mathrm{obd}}-L_{\mathrm{obd}} i_{2}(0) R_{s h}-\left(L_{g}+L_{d u}\right) i_{1}(0) R_{s h} .
\end{gathered}
$$

For the inverse Carson transformation of the image $I_{1}(\mathrm{P})$, its expressions must be multiplied by P . Then, according to [12-14].

$$
\begin{gather*}
I_{1}(\mathrm{P})=\frac{1}{L_{\mathrm{obd}}\left(L_{g}+L_{d u}\right.}\left\{\left[P^{2}\left(L_{g}+L_{d u}\right) i_{1}(0) L_{\mathrm{obd}}\right]+\right. \\
+P\left[K_{d} L_{\mathrm{obd}} i_{2}(0)-U_{g} L_{\mathrm{obd}}-\left(L_{\mathrm{r}}+L_{g}\right) i_{1}(0) R_{\mathrm{obd}}-\right. \tag{10}\\
\left.\left.-L_{\mathrm{obd}} i_{2}(0) R_{s h}-\left(L_{g}+L_{d u}\right) i_{1}(0) R_{s h}\right]-U_{g}\left(R_{s h}+R_{\mathrm{obd}}\right)\right\}
\end{gather*}
$$

If $\omega_{0}^{2}>a^{2}$, then

$$
\begin{align*}
& i_{1}(t)=\frac{1}{L_{\mathrm{obd}}\left(L_{g}+L_{d u}\right)}\left\{-\frac{\omega_{0}}{\omega} e^{-a t} \sin (\omega t-\theta)\left[\left(L_{g}+L_{d u}\right) i_{1}(0) L_{\mathrm{obd}}\right]+\right. \\
& \quad+\frac{e^{-a t}}{\omega} \sin \omega t\left[K_{d} L_{\mathrm{obd}} i_{2}(0)-U_{g} L_{\mathrm{obd}}-\left(L_{g}+L_{d u}\right) i_{1}(0) R_{\mathrm{obd}}-\right. \\
& \left.-L_{\mathrm{obd}} i_{2}(0) R_{s h}-\left(L_{g}+L_{d u}\right) i_{1}(0) R_{s h}\right]- \tag{11}\\
& \quad-\frac{1}{\omega_{0}^{2}}\left[1-\frac{\omega_{0} e^{-a t} \sin (\omega t+\theta)}{\omega}\left[U_{g}\left(R_{s h}+R_{\mathrm{obd}}\right]\right]\right.
\end{align*}
$$

where $\omega^{2}=\omega_{0}{ }^{2}-a^{2} ; \quad \tan \theta=\frac{\omega}{a}$.
If $\omega_{0}{ }^{2}=a^{2}$, то

$$
\begin{gather*}
i_{1}(t)=\frac{1}{L_{o b d}\left(L_{g}+L_{d u}\right)}\left\{e^{-a t}(1-a t)\left[\left(L_{g}+L_{d u}\right) i_{1}(0) L_{o b d}\right]+\right. \\
+t e^{-a t}\left[K_{d} L_{\mathrm{obd}} i_{2}(0)-U_{g} L_{\mathrm{obd}}-\left(L_{g}+L_{d u}\right) i_{1}(0) R_{\mathrm{obd}}-L_{\mathrm{obd}} i_{2}(0) R_{s h}-\right. \\
\left.-\left(L_{g}+L_{d u}\right) i_{1}(0) R_{s h}\right]-\frac{1}{\omega_{0}^{2}}\left[1-e^{-a t}(1+a t) U_{g}\left(R_{s h}+R_{\mathrm{obd}}\right]\right. \tag{12}\\
i_{1}(t)=\frac{1}{L_{\mathrm{obd}}\left(L_{g}+L_{d u}\right)}\left\{\frac { 1 } { \mathcal { L } _ { 1 } - \mathcal { L } _ { 2 } } \left(\omega_{0}^{2}<{\left.\mathcal{L}_{1} e^{2}, \text { то } e_{1} t-\mathcal{L}_{2} e^{-\mathcal{L}_{2} t}\right)\left(L_{g}+L_{d u}\right) i_{1}(0) L_{\mathrm{obd}}+}^{\quad+\frac{1}{\mathcal{L}_{1}-\mathcal{L}_{2}}\left(e^{-\mathcal{L}_{2} t}-e^{-\mathcal{L}_{1} t}\right)\left[K_{d} L_{\mathrm{obd}} i_{2}(0)-U_{g} L_{\mathrm{obd}}-\right.}\right.\right. \\
\quad-\left(L_{g}+L_{d u}\right) i_{1}(0) R_{\mathrm{obd}}-L_{\mathrm{obd}} i_{2}(0) R_{s h}-\left(L_{g}+L_{d u}\right) i_{1}(0) R_{s h}+ \\
+\frac{1}{\omega_{0}^{2}}\left[1-\frac{\omega_{0}{ }^{2}}{\left(\mathcal{L}_{1}-\mathcal{L}_{2}\right)}\left(\frac{e^{-\mathcal{L}_{2} t}}{\mathcal{L}_{2}}-\frac{e^{-\mathcal{L}_{1} t}}{\mathcal{L}_{1}}\right)\right]\left[U_{g}\left(R_{s h}+R_{\mathrm{obd}}\right],\right.
\end{gather*}
$$

where $\mathcal{L}_{1}, \mathcal{L}_{2}$ are roots of the characteristic equation.

With values $\mathcal{L}_{1}=12,488 \mathrm{G}$; and $\mathcal{L}_{2}=-30.314 \mathrm{G}$ of the roots of the characteristic equation

Let us determine the parameters of the windings of the traction generator and TED. The inductance $L_{\text {obdr }}$ of a real TED of the ED-118 type when operating in the AF mode, which corresponds to section I on the approximate magnetization curve [5], is determined from the equation:

$$
L_{o b d r}=\frac{\Delta \Phi}{\Delta i}=13.67 \cdot 10^{-3}, \mathrm{G}
$$

Inductance $L_{\text {obdu }}$ conditional TED:

$$
L_{\mathrm{obdu}}=\frac{13,67 \cdot 10^{-3}}{6}=2.44510^{-3}, \mathrm{G}
$$

The inductance of the armature windings of the traction generator and TED is determined by the formula [4].

$$
\begin{align*}
& L_{y a}=0.6 \frac{U_{\text {nom }}}{p \omega_{\text {nom }} I_{\text {nom }}} \tag{14}\\
& L_{\text {yag }}=\frac{465}{5 \cdot 89.25 \cdot 4320} \cdot 0.6=0.14 \cdot 10^{-3}, \mathrm{G} \\
& \quad L_{\text {yad }}=0.6 \cdot \frac{465}{2 \cdot 60.9 \cdot 720}=3.18 \cdot 10^{-3}, \mathrm{G}
\end{align*}
$$

The inductance $L_{d p}$ of the traction generator and conventional TED is determined by the formula [4]

$$
\begin{gather*}
L_{d p}=0.65 \cdot 2 \cdot \sigma_{k} \cdot \Phi_{k} \frac{\omega}{i_{y a}}, \tag{15}\\
L_{d p g}=0.82 \cdot 10^{-3}, \mathrm{G} ; \quad L_{d p d}=0.15 \cdot 10^{-3}, \mathrm{G}
\end{gather*}
$$

Conditional TED inductance $L_{d u}$:

$$
\begin{align*}
& L_{d u}=\frac{L_{y a d}+L_{d p d}}{6}, \mathrm{G} \tag{16}\\
& \quad L_{d u}=0.53 \cdot 10^{-3}, \mathrm{G}
\end{align*}
$$

The value of the resistance of the armature circuit and the DP of the traction generator will be taken according to [5]

$$
\begin{align*}
& R_{g}=R_{d p g}+R_{y a}, \mathrm{Ohm} \tag{17}\\
& \\
& \quad R_{g}=2.185 \cdot 10^{-3}, \mathrm{Ohm}
\end{align*}
$$

The value of the resistances of the resistors $R_{\text {ду }}$ and $R_{\text {шу }}$ will also be determined from [5]:

$$
\begin{align*}
& R_{d u}=\frac{R_{d u}+R_{d p d}}{6}, \mathrm{Ohm} \tag{18}\\
& R_{d u}=3.52 \cdot 10^{-3}, \mathrm{Ohm} \\
& R_{\text {shu }}^{o p 1}=\frac{R_{s h r}^{o p 1}}{6}, \mathrm{Ohm} \tag{19}\\
& R_{\text {shu }}^{o p 1}=3.283 \cdot 10^{-3}, \mathrm{Ohm} \\
& R_{\text {shu }}^{o p 2}=\frac{R_{s h r}^{R_{s h} 2}}{6}, \mathrm{Ohm} \tag{20}
\end{align*}
$$

$$
R_{s h u}^{o p 2}=1.533 \cdot 10^{-3}, \mathrm{Ohm}
$$

The coefficients $K_{\text {shg }}$ and $K_{\text {shd }}$ will be determined according to [6, 7]:

$$
K_{\text {shg }}=0.085, K_{\text {shd }}=0.12 \mathrm{Ohm}
$$

Calculate the coefficients B and C for the values:
$K_{\text {shg }}=85 \cdot 10^{-3} \mathrm{Ohm} ; \quad K_{\text {shd }}=120 \cdot 10^{-3} \mathrm{Ohm} ; \quad R_{g}=2.185 \cdot 10^{-3} \mathrm{Ohm} ; \quad L_{y a g}=0.14 \cdot$ $10^{-3} \mathrm{G} ; \quad R_{d u}=3.52 \cdot 10^{-3} \mathrm{Ohm} ; \quad L_{d u}=0.53 \cdot 10^{-3} \mathrm{G} ; \quad R_{\text {shu }}{ }^{\text {on } 1}=3.283 \cdot 10^{-3} \mathrm{Ohm}$; $L_{\text {ovu }}=2.445 \cdot 10^{-3} \mathrm{G} ; R_{\text {ovu }}=3.4 \cdot 10^{-3} \mathrm{Ohm} ; L_{\text {gdp }}=0.82 \cdot 10^{-3} \mathrm{G}$.
TED transfer coefficient $K_{g}=1$ on the linear part of the magnetization curve and $K_{g}=$ 0.5 (Fig. 1) behind its "knee", the value of $\mathrm{B}>0$ and $\mathrm{C}>0$, and $\mathrm{B}=104.011 \cdot 10^{-6}$, a $\mathrm{C}=$ $3352.679 \cdot 10^{-6}$ at $\mathrm{K}=1$ and $\mathrm{C}=1679.5 \cdot 10^{-6}$ at $K_{g}=0.5 \quad \mathrm{a}=14.275$
Values

$$
\begin{gathered}
2 \mathrm{a}=\frac{B}{A}=14.275=28.5 \quad 2 \mathrm{a}=14.275 \\
\omega_{0}^{2}=\frac{C}{A}=920.03 \quad \text { by } K_{g}=1 \omega_{0}^{2}=920.03 \\
\omega_{0}^{2}=\frac{\mathrm{C}}{A}=461.021 \text { by } K_{g}=0.5 \quad \omega_{0}^{2}=461.021
\end{gathered}
$$

Thus the roots of the characteristic equation

$$
\begin{gathered}
\mathcal{L}_{1}, \mathcal{L}_{2}=-14.275 \pm j 26.763 \text { at } K_{g}=1 \\
\mathcal{L}_{1}, \mathcal{L}_{2}=-14.275 \pm j 16.039 \text { at } K_{g}=0.5
\end{gathered}
$$

3 Conclusion

The results of the above calculations confirm the inconsistency of the direct switching scheme, carried out according to the principle that the smaller the position of the regulator, the higher (relative to the setting at the nominal power of the DGU) the direct switching speed occurs. This principle has been violated since the creation of the TE10 diesel locomotive. It is violated to this day on TE10 diesel locomotives, except for diesel locomotives equipped with the USTA system.

References

1. Ivanov S. D., and Markin V. M. Ustroystvo dlya upravleniya rezhimom raboty tyagovogo elektrodvigatelya postoyannogo toka teplovoza. (1997).
2. Belobayev G. Ya., and Novikov, O. I. Ustroystvo dlya upravleniya tyagovymi elektrodvigatelyami s posledovatel'nym vozbuzhdeniyem transportnogo sredstva. (1994).
3. Djanikulov A. T., and Safarov U. I. Specific features of research of locks of the te10 series with an unstable operation of the relay transition relay switching system RD3010. Journal of Hunan University (Natural Sciences), Vol. 49(09). (2022).
4. Djanikulov A.T., Mamayev Sh.I., Kasimov O.T. Modeling of rotational oscillations in a diesel locomotive wheel-motor block. Journal of Physics: Conference Series. Vol. 1889, p. 022017, (2021).
5. Kasimov O. T., Djanikulov A. T., and Mamayev S. I. Modeling the bending of the tire surface by pads during braking. In AIP Conference Proceedings, Vol. 2402, No. 1, p. 070030. (2021).
6. Kasimov O., Fayzibayev S., Djanikulov A., and Mamayev S. Numerical studies for estimation of temperature fields in bandage material during locomotive braking. In AIP Conference Proceedings, Vol. 2432, No. 1, p. 030025. (2022).
7. Valiev, M., and Kosimov, K. Diagnosing the technical condition of the diesel cylinderpiston group. In E3S Web of Conferences, Vol. 264, p. 04061. (2021).
8. Yusupov D. T., Kutbidinov O. M., Samadov S. A., and Abdullaev E. S. Investigation of winding faults of traction transformers. In IOP Conference Series: Earth and Environmental Science, Vol. 868, No. 1, p. 012026. (2021).
9. Ablyalimov O., Khamidov O., and Domanov K. Determination of Locomotive Traction Efficiency on the Section of Marokand-Kattakurgan of Uzbek Railway. In Networked Control Systems for Connected and Automated Vehicles: Vol. 1, pp. 671680. (2022).
10. Khamidov O., and Udalova D. Technical and Economic Efficiency of Intelligent Data Analysis on the Railways of the Uzbekistan Republic. In International Scientific Siberian Transport Forum TransSiberia-2021: Vol. 1, pp. 230-239. (2022).
11. Khamidov O. R., and Grishchenko A. V. Locomotive asynchronous traction motor rolling bearing fault detection based on current intelligent methods. In Journal of Physics: Conference Series Vol. 2131, No. 4, p. 042084. (2021).
12. Ablyalimov O., Petrochenko S., and Kodirov N. Analyzing the Movement of a Freight Train at Stops on Flat Sections of the Railway. In Networked Control Systems for Connected and Automated Vehicles: Vol. 2. pp. 165-171. (2022).
13. Petrochenko S., Ablyalimov O., Kodirov N., and Rakhmaev R. Determining Optimal Electrical Discharge Machining Modes for the Disc Tab Grooves of Small-Size ByPassengine. In Networked Control Systems for Connected and Automated Vehicles: Vol. 2, pp. 261-269. (2022).
14. Khamidov O., Yusufov A., Jamilov S., and Kudratov S. Remaining life of main frame and extension of service life of shunting Locomotives on railways of Republic of Uzbekistan. In E3S Web of Conferences, Vol. 365, p. 05008. (2023).

[^0]: *Corresponding author: axat.djanikulov.7554@mail.ru

