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Abstract. The article deals with the vibrations of a reinforced concrete 
bridge whose supports are located in soils with different properties under 
the action of overweight cargoes. The assumption is made that the structure 
deformed in the elastic zone when Hooke's law is valid. The Fourier 
method is used to solve the problem. The results are presented as graphs of 
changes in stresses and deflections along the coordinate and time, which 
are accompanied by analysis. When a concentrated load is applied, 

depending on the stiffness coefficient of the connection between the 
supports and the ground, stresses exceeding the limit load can occur in the 
middle of the beam cross-section. Thus, in the calculations, it is necessary 
to consider the nature of the interaction of the supports with the 
surrounding soils when calculating the beams for the action of moving 
loads. 

1 Introduction 

The development of transport infrastructure makes it possible to create large integrated 

cities, thereby opening up new prospects for the socio-economic development of regions. 

Bridge constructions, as a type of transport infrastructure, are usually aimed primarily at the 

internal development of a country, improving transport accessibility and enhancing inter-

regional connections.  

In the world, various transport structures, including bridge structures, are important for 

expanding trunk road networks, increasing passenger and freight transport, and developing 

infrastructure in large cities. Bridge structures, as a construction product, have specific 

consumer properties that determine their purpose and quality [1]. Research on the dynamic 
response of bridges due to moving loads has received considerable attention with the 

passing of recent years. Several mathematical models of vehicles were developed with the 

passing of years [2].  

The study and analysis of oscillating processes of transport structures under moving 

loads are becoming even more important nowadays with changing conditions. This is due 

to increasing traffic speeds, with the proportion of multi-axle and heavily laden vehicles in 
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the overall traffic flow continuously increasing. On the other hand, every year, more and 

more transport structures, due to the increased dynamic impact from vehicles and improper 

use, develop defects and damages that, even when subjected to short-term and even more 

long-term impacts, change the nature of the vibrations of structures under moving loads and 

can affect the durability of the structure. 

The problem of assessing the dynamic impact of road and railroad loads on bridge spans 

is important to ensure the reliability of structures both at the design stage of new bridges 

and during the reconstruction and operation of existing bridges. New structures, where 

restrictions are generally not imposed, may also receive significant dynamic impacts from 

the passing load due to the span structure's structural and static design deficiencies. In this 

connection, creating a scientifically substantiated modern methodology for assessing the 
dynamic effects of moving loads on road bridge spans is an urgent task [2-5].  

The study of the dynamic impact of vehicles is especially important for road bridges 

with increased deformability. In this situation, the forces of inertia of the vehicle moving on 

the bridge become significant and begin to affect the overall oscillatory process. A 

characteristic feature of the operation of the transport structure is unsteady dynamic effects. 

At the same time, the intensive development of computing technology makes it possible to 

simulate the dynamic behavior of discrete-continuous and continuum systems whose 

mathematical model is described by refined partial differential equations. Note also that an 

increase in the carrying capacity of vehicles leads to the emergence of new qualitative and 

quantitative features and effects of the dynamic impact, which previously did not manifest 

themselves or were insignificant. To study the peculiarities of the dynamic impact of 

moving loads on bridge structures in modern conditions, existing approaches become 
insufficient, and dynamic calculation methods need to be improved and developed. All this 

confirms the importance and relevance of solving the problem of changing the dynamic 

responses of transport structures to moving loads [6-20]. 

2 Objects and methods of research 

Most transport structures for passing a variety of moving loads are complex dynamic 

oscillating systems with distributed parameters and are, therefore, continuous. To assess the 

reliability and carrying capacity of such engineering structures under the action of 

nonstationary dynamic influences, complex, modern, and perfect calculation methods are 

used. The algorithms developed on their basis are implemented using intensively 
developing computer technology and application software packages. This allows you to 

perform a sufficient number of computational experiments to get a complete picture of the 

structure's deflection. However, in several cases, it is possible to assess the reliability of a 

structure with sufficient accuracy, reasonably using the simplicity of calculation methods in 

the classical formulation without involving complex and modern calculation methods. In 

this case, it is necessary to determine the limits of using one or another simplified variant of 

the statement of such a problem. On the other hand, each of the options can be improved to 

generalize the problem and expand its scope.  

1. Figure 1 shows a single-span reinforced concrete road bridge. Consider bridge 

abutments as rigid bodies interacting with the ground, subject to nonstationary dynamic 

forces. Set the origin at the point O. The Ox axis coincides with the neutral axis of the 

beams, and the Oy1 axis with its origin at O1 is perpendicular to it (Fig. 2).  
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Fig. 1. Reinforced concrete bridge with road 
beam 

Fig. 2. Calculation diagram of a road single-span 
beam bridge with moving loads 

 

Consider the case where a moving load acts on the beam in the form of Dirac delta 

function Pδ(v0t−x) (v0 − speed of the moving uniform, P is the magnitude of the acting load 
per unit length of the beam), where the Ox axis coincides with the beam axis, the origin of 

the coordinates is located in the right beam support (fig. 3). The deflections of the beam 

W(x, t) satisfy the equation  
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where mb is beam linear weight, E is the Young's modulus of the material of the beam, Jz is 

the moment of inertia of the section, l is the length of the span, M1 and M2 are the weights 

of the left and right supports, k1 and k2 are the longitudinal shear coefficients on the contact 

surface of the supports with soils. 

 

 

Fig. 3. Calculation scheme of moving concentrated load  

Equation (1) is solved by the Fоurier methоd, and the solution of the corresponding 

homogeneous equation is presented as 

 

   tTxW 
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Assuming TT 2 , we get  
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The solution of equation (4) is presented through the Krylov functions  

44332211 YCYCYCYC  ,     2/cos1 xchxхY  , 

    2/sin2 xshxхY  ,     2/cos3 xchxхY  ,     2/sin4 xshxхY  , 

where the constants Ci (i=1, 2, 3, 4), according to conditions (2) and (3), satisfy equations  

 

02 C , 

0)( 4

3

11  CC  , 

0)()()( 342341   YCYCYC , 

)()( 2341  RCRC  + 0)(34 RC ,    (5) 

 

where 4R )()()( 2

3

12  YY  , 2R )()()( 4

3

32  YY  , 3R

)()()( 1

3

42  YY  , 
4 iii  , l  , EJlkii /3 , ii mlm /0 . 

After excluding the constant C4, the last equations are reduced to the form  
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From system (5), we obtain the equations for determining the natural frequencies λ=λi 
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The eigenfunctions of the boundary value problem (2) and (3) for equation (1) will 

be represented as  
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The eigenfunctions φi(ξ) satisfy the orthogonality condition  
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Solving an Inhomogeneous Equation  
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Let us write equation (9) at the points ξ=0 and ξ=1  
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By multiplying equality (9) by φk(ξ), α1φk(0) and α2φk(1), respectively, we obtain the 

following equality  
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Using the orthogonality condition (7), we obtain  
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ψk(z)=φk(z) for z≤1, φk=0 for z≥1. 

ψk(z)=φk(z) for z≤1, ψk=0 for z≥1. 

 

Given zero initial data, equation (12) has a solution in the following form:  
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H(z) is a Heaviside function.  

3 Results and Discussion 

Figure 4, a shows plots of the distribution of beam deflections along the length W(ξ, t) (m) 

for three values of stiffness coefficients of supports k1=k2=k of a rectangular section with 

sides a0 and b0 at different moments of time.  
The calculations take: l=22 m, mb=889 kg/m, m1=m2=2500 kg, E=5·1010 MPа, 

J=0.00312 m4, v0=40 km/h, P=200 kN, S1=S2=2(a0+b0), a0=0.35 m, b0=0.35 m. The time of 
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action of the moving uniform load on the beam is t0=l/v0=1.98 sec. Fig. 5 shows the 

deflection plots for the time moment 0<t<2t0.  

From the graphs of deflection changes W, shown in Fig 4, it follows that for the moment 

0<t<t0, the greatest deflections occur in the section x=0.5l at a time when the load reaches 

this and the end sections (curves 2 and 4) of the beam. Maximum deflections are achieved 

in sections x=0 and x=l at the time t=t0. The same pattern of change in beam deflections 

along the coordinate occurs for time t0<t<2t0. 

The graphs of stress distribution along the beam sections at different moments of time t(s) 

are shown in Fig. 4, b. At time moments t=0.5t0≈1 sec and t=t0≈2 sec (curves 2 and 4), 

maximum stress values 20 MPa with positive and negative signs are reached in sections x=0.5l 

and x≈0.85l at time moment t=0.5t0 (the moving load will be in the middle or close to the end 
section of the beam). 

 

a) 

 

 

 

b) 

 
 

Fig. 4. Distribution of beam deflections W(m) along the length (a) and longitudinal stresses σ(MPa) (b) for 
k=105 N/m2 and different time moments t(s): 1–t=0.25t0, 2–t=0.5t0, 3–t=0.75t0, 4–t=t0, 5–t=1.25t0, 6 –
t=1.5t0, 7–t=1.75t0, 8–t=2t0 

 

The analysis of the results of the calculations performed for the other two stiffness 

values k1=k2=k (Fig. 5 a, b and Fig. 6 a, b), indicate the preservation of the above patterns 
of changes in deflections and longitudinal stresses along the x-axis. An increase in the 

values of the stiffness coefficients affects the laws of change in deflections and stresses 

along the length of the beam. At the same time, the highest values of deflections of the 

beam stresses can be achieved in the beam sections x=0, x=0.5 at the time moments t=0.5t0, 

t=0.75t0, t=t0, t=1.25t0, t=1.5t0, and t=2t0. 
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a) 

 
 

b) 

 
 

Fig. 5. Distribution of beam deflections W(m) along the length (a) and longitudinal stresses σ(MPa) 

(b) for k=106 N/m2 and different time moments t(s): 1–t=0.25t0, 2–t=0.5t0, 3–t=0.75t0, 4–t=t0, 5–
t=1.25t0, 6–t=1.5t0, 7–t=1.75t0, 8–t=2t0 
 

a) 

 
 

b) 

     

 
 

Fig. 6. Distribution of beam deflections W(m) along the length (a) and longitudinal stresses 
σ(MPa) (b) for k=107 N/m2 and different time moments t(s): 1–t=0.25t0, 2–t=0.5t0, 3–t=0.75t0, 4–
t=t0, 5–t=1.25t0, 6–t=1.5t0, 7–t=1.75t0, 8–t=2t0 
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2. Let now the load P(x, t) uniformly distributed on the section of the beam with length 

L0 (Fig. 7), determined by the formula (p0=P0/L0)  

P=p0 for 0<x<v0t, P=0 for x>v0t, 0<t<L0/v0.  

P=0 for 0<x<v0t–L0, P=p0 for v0t–L0<x<v0t.  

P=0 for v0t<x<l, L0/v0<t<(l–L0)v0.  

P=0 for 0<x<v0t–L0, P=p0 for v0t–L0<x<l, 

00

0

v

l
t

v

Ll



.  

P=0 for 0<x<l, l/v0<t<(l+L0)/v0. 

 

 

Fig. 7. Calculation scheme of the movable distributed load 

 

Equations (12) for determining the functions Tk(t) in this case have the form  
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The solution of equation (13), taking into account the form of the right-hand side, will 

be represented as  
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The deflections of the beam sections and the longitudinal stresses are  
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Fig.8-10 shows the graphs of changes in deflections W(m) (a) and longitudinal stresses 

σ(MPa) (b) along the coordinate for three values of the stiffness coefficient k=k1=k2 (N/m2) 

at different times t=ti (s). In this case, the total time of the distributed load along the beam 

will be t=t4=(l+L0)/v0. The calculations take L0=5 м, i=1÷8, t5=t4+t1, t6=t4+t2, t7=t4+t3, t8=2t4.  

Then we have t1=0.45 sec, t2=1.53 sec, t3≈2 sec, t4=2.43 sec, t5=2.83 sec, t6=3.91 sec, 

t7=4.17 sec, t8=4.86 sec. 

a) 

  
b) 

  

Fig. 8. Distribution of beam deflections W(m) along the length (a) and longitudinal stresses σ(MPa) 

(b) for k=105 N/m2 and different time moments t(s): 1–t=t1, 2–t=t2, 3–t=t3, 4–t=t4, 5–t=t4+t1, 6–
t=t4+t2, 7–t=t4+t3, 8–t=2t4  
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An analysis of the curves shows that the greatest deflections and stresses occur in the 

middle section of the beam at the time t=0.45 sec and t=2.83 sec and are periodic in time. 

An increase in the stiffness coefficient value of the coupling with the ground medium leads 

to an increase in stresses in the beam sections. This legitimacy is most convincingly noticed 

at high values of the coefficient k (Fig.10. b). The above general regularity under the action 

of a moving concentrated force also takes place in the case of the action of a uniform 

distributed load.  

 
a) 

 
 

 
b) 

  
Fig. 9. Distribution of beam deflections W(m) along the length (a) and longitudinal stresses σ(MPa) 

(b) for k=106 N/m2 and different time moments t(s):1–t=t1, 2–t=t2, 3–t=t3, 4–t=t4, 5–t=t4+t1, 6–
t=t4+t2, 7–t=t4+t3, 8–t=2t4  

a) 
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b) 

  

Fig. 10. Distribution of beam deflections W(m) along the length (a) and longitudinal stresses σ(MPa) (b) 
for k=107 N/m2 and different time moments t(s):1–t=t1, 2–t=t2, 3–t=t3, 4–t=t4, 5–t=t4+t1, 6–t=t4+t2, 7–
t=t4+t3, 8–t=2t4 

4 Conclusion 

The action of a moving uniform load on the beam results in the occurrence of maximum 

longitudinal forces in the initial, middle, and end sections of the beam at the moment when 

the load passes through those sections. 

After completing a moving uniform load, the laws of stress change along the coordinate 

are practically independent of time.  
An increase in the stiffness coefficient of the elastic connection between the supports 

and the ground has a different effect on the character of the stress change along the x-axis. 

Thus, at high coefficient values, the laws of voltage change along the coordinate are 

practically independent of time. In this case, as the value of this coefficient increases, the 

stress values in the beam sections increase. 

When a concentrated load is applied, depending on the stiffness coefficient of the 

connection between the supports and the ground, stresses exceeding the limit load can 

occur in the middle of the beam cross-section. Thus, in the calculations, it is necessary to 

consider the nature of the interaction of the supports with the surrounding soils when 

calculating the beams for the action of moving loads. 
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