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Abstract. The design, construction, and operation of high earth dams on 

the territory of seismogenic zones of Uzbekistan set the task for researchers 

to improve the calculation methods and algorithms for various kinds of 

loads to which the structure is subjected. At present, the application of the 

dynamic method (a wave theory) to the calculation of an earth structure, 

i.e., the dynamic stress-strain state of high earth dams under seismic impact 

within the framework of wave theory, is the most difficult problem in the 

mechanics of a deformable rigid body. In the example of the operating 

Charvak high earth dam, the numerical method of finite differences solved 

the problem of studying the stress-strain state with shear dynamic impact 

on the base (such as the records of a real seismogram of an earthquake). At 

the boundaries of the considered finite region of the base, the so-called 

radiation conditions are set, i.e., diffraction is not considered. The result of 

solving the non-stationary problem is presented as isolines of 

displacements and stresses along the dam's body, depending on time. At 

that, the most vulnerable zones of the considered earth dam were 

identified. 

1 Introduction 

At present, one of the most important priority tasks for developing the national economy is 

to ensure the safe and reliable operation of structures in seismic regions, such as the 

territory of the Republic of Uzbekistan. In particular, the category of especially important 

structures includes earth hydro-technical structures (dams of hydroelectric power stations, 

dam reservoirs) since their possible destruction during an earthquake can lead to 

catastrophic consequences and death of people. 

At present, various methods of calculation are used to assess the strength under loads to 

which the body of the water-retaining structure itself is subjected. The current normative 

methods for calculating earth dams for seismic resistance are based on the linear-spectral 

theory. This method considers a structure as a cantilever rod (fixed to the base). A one-

dimensional problem is solved to determine the frequencies and modes of vibrations. One 

of the disadvantages of this method is that it does not consider the non-one-dimensional 

nature of the oscillation and the real physical and mechanical characteristics of the soil of 
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the structure and the subsoil adjacent to it. A sufficient number of publications are devoted 

to the dynamic calculation of high earth dams under static (basic) and dynamic (special 

combinations of loads) loads, taking into account the linear and non-linear laws of soil 

properties. The tasks are solved mainly by the finite element method [1-4]. 

In the publications of foreign scientists and researchers [5-8], special attention is paid to 

solving specific problems related to assessing the stress-strain state (SSS) and the dynamic 

behavior of earth dams, taking into account various impact factors. 

A plane design model representing the cross-section of an earth dam is considered in the 

article; the base consists of siltstone. In contrast to similar studies, the article deals with the 

problem of determining the stress-strain state of an earth structure together with the 

foundation. The seismic impact on the structure is realized through the base. In the 

numerical calculation of the problem, an explicit scheme of the numerical finite difference 

method of second-order accuracy was used to solve a system of differential equations. A 

non-stationary problem was solved for the elastic "soil dam-foundation" scheme in the 

example of the high earth dam of the Charvak HPP (the height is 169 m). 

The researchers in [9-12] solved the problems of statics for the high earth dam of the 

Charvak HPP. The problem of studying the stress state of the dam was solved by 

considering the forces of gravity and hydrostatics [9-12].  

The tasks were solved using the numerical finite element method. The service life of the 

dam for more than 50 years makes it possible to solve the problem in an elastic formulation. 

Comparison of the results of the solved problems of statics with the data of long-term field 

studies showed the reliability of the solutions obtained [9-12]. 

2 Objects and methods of research 

The equations of motion of a plane elastic system "earth dam-foundation" are based on the 

basic equations of continuum mechanics: 
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where index i=1 refers to the base, i=2 - to the dam. ρi is the density, 
iiu , are the 

displacement vector projections on the x, y-coordinate axes; 
i

xy

i
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i

xx  ,,  are the normal 

and shear stresses. 

The Cauchy relations are presented in the following form: 

.

,,

xy

u

yx

u

ii
i

xy

i
i

yy

i
i

xx



























   (i=1,2)   (2) 

Following Hooke's elastic law, the relationship between the stress and strain tensors is 

represented as: 
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where i is Poisson's ratio; Еi is linear deformation modulus. 

Boundary conditions are: 

on the surface of the upstream slope of the dam 
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where 11, ml  are the direction cosines; ,xp
yp are the stress components from 

hydrostatic pressure, 

on the crest of the dam 

 

𝜏𝑥𝑦
2 = 0;    𝜎𝑦𝑦

2 = 0    (5) 

 

on the downstream face 
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where ,, 22 ml  are the direction cosines. 
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on the free surface of the dam foundation 
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At the contact boundary between the base and the dam, the no-slip (continuity) 

condition is satisfied  
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Displacements and velocities in the entire area of the earth dam at the initial time (t=0) 

are zero. 

The time when the wavefront approaches the lower part of the dam base was taken as 

the initial condition t=0, i.e. 
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here the superscript 0 corresponds to displacements in the incident wave. 

The problem is solved numerically by the method of finite differences using an explicit 

scheme, and therefore we select the calculated finite domain for the base of the dam, the so-

called fictitious boundary, and set the boundary conditions along the contour of the 

calculated domain. The displacement for the dam foundation soil 
1u , 

1  is represented as 

the sum of the incident (
0,10,1 ,u ) and reflected (

1,11,1 ,u ) waves, i.e. 

0,11,11 uuu  , 
0,11,11   . Subject to the boundary conditions, the 

determined displacements, and stresses for the dam foundation soil are also presented as the 

sum of incident and reflected waves, and radiation conditions are set on fictitious 

boundaries. 

On the fictitious boundary of the base from the side of the upstream slope, the following 

conditions are set: 
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On the fictitious boundary of the base from the side of the downstream slope, the following 

conditions are set: 
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On the bottom of the fictitious boundary of the base, the following conditions are set: 
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The calculated area of the earth dam, taking into account the deformable subsoil, is 

conditionally divided into three areas with a step: hx=hx1 horizontally (x-axis) (upper 

retaining prism); hx=hx2 (dam crest), hx=hx3 (lower retaining prism); hy vertically (Fig.1). 
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Fig. 1. Partition of the calculation domain of the dam 

 

For internal nodes of the computational domain at (i+1/2, j) at time kτ, the components 

of the strain tensor in the difference form have the following form 
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for the node (i,j+1/2) at kτ, 
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where on the upper retaining prism, it is hx=hx1, on the lower retaining prism - hx=hx3; on 

the crest of the dam - hx= hx2. 

Since the problem under consideration does not take into account the water pressure on 

the upstream slope, i.e., px= py =0, then conditions (4) have the form 
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where 
111 / mld  . 

By substituting Hooke's law (3) and Cauchy relations (2) into equality (17), we define 
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According to (18), we obtain an expression for determining the contour displacements 
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i=j,  j=1,…,J1-1, k=1,…,K. 

 

For the downstream slope (6), similar to (19), we obtain 
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i=I2+j, j=1,…,J1-1, k=1,…,K 
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Taking into account the boundary condition at the crest of the dam (5) and Hooke's law 

(3), the formula for calculating the normal stress 
xx  is 
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at nodes with half-integer grid numbers, shear stresses 
xy  and normal stresses 

yy  are 

zero (at the crest of the dam) and 
xx  is determined from (21) 

 

22

)(4 ,,1

,2/1,
hx

uu

G

GG
k

ji

k

jik

jixx














   (21) 

 

i=I1, …,I2-1,  j=J1, k=1,…,K. 
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The finite-difference equation of motion of the dam and its foundation for each domain 

has the following form 
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with boundary conditions (9) - (11), and initial conditions (17). Next, it is necessary to 

determine the displacements in the nodes of the dam for each time point. 

Difference equation (22) approximates the equation of motion (1), with order O (
2 ,

2hx , 
2hy ). Condition (τ<h/c1), where h =min(hx,hy) is the condition for the stability of the 

scheme. 

3 Results and discussion 

To perform dynamic calculations, it is necessary to set the inertial and elastically damping 

properties of a hydro-technical structure and the seismic impact in the form of an 

accelerogram of foundation oscillations. Since the impact parameters are random variables, 

therefore, a single calculation of the structure for the action specified by the earthquake 

accelerogram should be considered the implementation of a random process. One of the 

most common and rather conservative ways [13-15] is using not one but several calculated 

accelerograms (a package of accelerograms), taking their maximum values as the calculated 

forces. 

When calculating a structure for a package of accelerograms, the latter must satisfy 

several requirements. In the most general case, these requirements include: 

a) the absence of serious distortions in the calculated accelerograms; 

b) an account for the correlation between the calculated intensity, amplitude, and the 

dominant frequency of the impact. 

These requirements are strict, and the calculations are time-consuming. Therefore, 

dynamic calculations are now widely used, in which a short-time process is taken as the 

impact, and a seismic impact model is used in the calculations. The proof of the reliability 

of the developed methods and algorithm for solving the problem under consideration was 

the solution to the test problem (Lamb problem) [16-17]. 

The model proposed by I.L. Korchinsky [18, 20] is taken as a seismic impact 
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where А is the maximum acceleration value, s is the attenuation coefficient, ω is the 

dominant frequency of the impact. 

In the problem under consideration, the seismic impact on the dam foundation in the 

horizontal direction (seismogram) is taken in the following form 
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which represents the model (23) for A=0.2g and coefficient s=0.3, which is equivalent to 

an 8-point earthquake. 

For example, the Charvak earth dam was considered with the following parameters: 

height H=168m; crest width Lo=12m; coefficients of laying slopes: upstream m1=2.2, 

downstream – m2=2.2. 

The design domain of the earth dam is divided vertically with a step hy=2m, and 

horizontally: hx1=4.4m, core hx2=2m, downstream slope hx3=4.4m. The numerical grid of 

the model has 7476 nodes. Longitudinal wave propagation velocity in the dam's body is V

р
=1000m/s; Poisson's ratio  =0.3, soil density  =1950 kg/m3. The time step for the 

calculation is t =0.001s, which satisfies the stability condition for calculating the difference 

scheme. 

As the impact on the dam foundation, the law of change of displacements is taken in the 

horizontal direction in the form of (24) and in the vertical direction 00  , i.e., there is no 

vertical component.  

The calculations were performed at frequencies f=1Hz and f=5Hz, which enter the 

frequency range of strong earthquakes and are the key parameters of many building codes 

when assessing seismic risk. 

Isolines of velocities of (horizontal) tangential stresses (t=0.3 sec) at frequency f=1Hz 

are shown in Figures 2-3, and the dam's foundation is assumed to be non-deformable. It can 

be seen that at the initial time point, a shear wave propagates along the dam at a large 

amplitude. Vertical oscillations of the dam occur due to wave reflection from the upstream 

and downstream slopes. 

After the time point t=0.3s, the shear wave front travels a distance of approximately 

160m (80x2m) at a dam height of 168m. In the lower part of the retaining prisms, the 

particle velocities in the horizontal direction have a negative value (-0.1m/s), which shows 

that the particles in this part of the dam have changed their direction. Figure 3 at the time 

point t=0.3sec shows the isolines of the maximum values of shear stresses τmax, and its 

maximum value of 0.41 MPa occurs in the area of the dam crest. 

 

 

Fig. 2. Isolines of horizontal velocity 
t

u




 m/s in the body of the dam at t=0.3s  and frequency 𝑓 =

1 𝐻𝑧. 
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Fig. 3. Isolines of the maximum value of shear stress )(max МРа  in the body of the dam 

at t=0.3s and frequency f=1 Hz.  

 

Figure 4 shows the distribution of shear stress in the body of the dam and foundation at 

time t=10 sec and frequency f=1 Hz. 

Acceleration amplitude according to formula (23) is A=0.2g, coefficient s=0.3. 

Longitudinal wave propagation velocity at the dam base is а1=1000 m/s, density 

ρ1=1950kg/m3, Poisson's ratio ν1=0.3. For the body of the dam, а2=600 m/s, density 

ρ2=1750kg/m3, Poisson's ratio ν2=0.3 are taken. 

 

 
Fig. 4. Distribution of shear stress )(max МРа  in the body of the dam and at the bases at t=10s.  
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4 Conclusion 

In contrast to the studies conducted in [1-8], in this article, following the current regulatory 

methods for calculating structures for seismic effects, the stress-strain state was calculated 

using the example of the high earth dam of the Charvak HPP, which has been in operation 

for about 50 years. A real record of earthquakes was taken as a seismic impact. The 

problem was solved numerically using the finite difference method. 

Thus: 

- a mathematical formulation was developed, and a solution to a non-stationary problem 

was derived by the numerical method of finite differences. In the example of a specific 

operated high earth dam, the calculation of the stress state together with the base and the 

physical and mechanical parameters of the soil of the structure and the base was conducted 

under shear seismic impact; 

- the results of solving the problem are of horizontal velocities, normal, tangential, and 

maximum tangential stresses in the body of the dam at the frequency of seismic action 

f=1Hz and f=5Hz, which enter the frequency range of strong earthquakes. 

- for the dam under consideration, it was shown that low-frequency seismic impacts are 

more unfavorable than high-frequency ones. At that, the crest and slopes are the most 

vulnerable areas of high earth dam in terms of the possibility of soil sliding. 
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