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Abstract. In this paper, a mathematical model of the process of fluid 
filtration in underground layered formations is considered and numerically 
solved as raw material for generating electrical energy. The objects of the 
filter are anomalously structured and Newtonian fluids. Computational 

algorithms are built using iteration, direct and streaming differential sweep 
methods. An analysis of the numerical solution of the problem has been 
carried out. The number of flows between reservoirs was determined, as 
well as the position of the boundaries of disturbances, taking into account 
the dynamics of reservoir development. 

1 Introduction 

It is known that the issue of energy security of each country has become acute all over the 

world. In turn, energy security is closely related to the energy supply of the country and it 

depends primarily on the uninterrupted supply of electricity. If each country has sufficient 

resources to generate the necessary volumes of electrical energy obtained from wind, solar 

installations, as well as from hydro-thermal power plants, where the components of the raw 

material are: wind, sunlight, water from mountain rivers and canals, as well as natural 

hydrocarbons (gas, oil, gas condensate) produced from underground reservoirs, the 
scientific and technical development of this country is proceeding at an accelerated pace. 

The fragility of this system was shown by the energy shortage in European countries and 

many other countries (including Uzbekistan) during the period of abnormal cold at the end 

of last year and at the beginning of this year. Consequently, scientists and researchers have 

faced the priority tasks of providing the energy system with resources, while using 

automated process systems to manage production processes. natural resources that made it 

possible to increase and constantly generate electrical energy. 

The study of the process of fluid filtration in hydrodynamically connected and 

unconnected (developed by a single well) porous medium is important in the design, 

analysis, forecasting and regulation of the development of fields containing fluids (gas, oil, 

water, gas condensate, etc.) necessary for the functioning of the national economy of any 

countries. It is due to the fact that the porous medium is multilayered and is a complex 
geological structure. In real cases, it is sometimes difficult to determine the boundaries 
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between interlayers, since there is heterogeneity in spatial variables, and sometimes in 

temporal variables. In the latter case, the porous medium may be filled with fluids having 

structural properties, and sometimes the porous medium itself may be structured. In these 

cases, reservoir characteristics change over time to accommodate the fluid velocity. Works 

[1, 2] are considered to be the beginning of the study of the process of groundwater 

filtration in multilayer porous media in simplified formulations. At the same time, the 

authors neglected the vertical velocity component in well-permeable formations, and thus 

the flow was considered horizontal and in low-permeable formations, the horizontal 

component of the velocity was neglected and the flow was assumed to be vertical. Further, 

a refined scheme was proposed [3, 4] where the vertical velocity component is taken into 

account in well-permeable reservoirs, and the effect of hydraulic connection between 
reservoirs was taken into account through the boundary conditions. In [5], a mathematical 

model was constructed that takes into account the elastic reserve of fluid in low-

permeability formations. Later, within the framework of these models, many problems of 

underground hydrodynamics were solved. Thus, in [6], a mathematical model according to 

the Hantush scheme for layered reservoirs was considered. 

Since when integrating over the variables z in the reservoir, terms appear in the 

equations - the flow coefficients then for the effective organization of the computational 

process, in [7] an approximate method for calculating at each time step is proposed, which 

the authors called intermediate models. 

Generalization and substantiation of these works for multilayer oil-gas fields and 

dedicated work [8]. 

The study of the filtration process was also devoted to numerous works [9, 10, 11, 12] 
with assumptions and assumptions regarding the geometry of the layered reservoir and the 

characteristics of the saturating fluid. Almost all of these studies have assumed that fluid 

motions follow the linear Darcy law (Newtonian). Some works [6, 7, 8] considered fluid 

motions as non-Newtonian and mathematical models were built taking into account these 

assumptions. For structured fluids, there is almost no research in the scientific literature, 

especially in multilayer systems it has not been considered. It is known that structured 

fluids include those types of fluids that have a kind of filtration, differing from others, both 

in kinematic and dynamic properties, affecting their structural structure during filtration. 

Sometimes the structure of the porous medium itself may have structural characteristics that 

are not characteristic of ordinary media. The influence of these factors in total can lead to 

the fact that during the filtration process, physicochemical molecular and structural 
transformations begin to occur, associated with surface tension forces and other actions, 

which subsequently can be the causes of anomalous filtration of structured fluids. 

Such types of fluids and media behave differently with a destroyed and not destroyed 

structure, which affects the mobility and filtration rate. 

In the process of fluid filtration of this type, various mobility zones with unknown 

mobile boundaries are formed in the reservoir, such as: creep zone (where the fluid 

structure is practically not destroyed); a zone of medium (sometimes anomalous) mobility 

(where the relationship between velocity and pressure gradient is non-linear); zone of 

maximum mobility (where the relationship between velocity and pressure gradient is almost 

linear). Between these zones, there may be a critical value of the pressure gradient [13-15]. 

Studies related to mathematical modeling of this direction were also carried out in 

works [16-18], in one-dimensional and two-dimensional cases for single-layer media, 
where separate, as well as multi-parameter mathematical models were proposed, including 

various types of approximation of the functional relationship between the speed of 

movement and the pressure gradient. Such an interpretation and method of constructing a 

multiparametric mathematical model with the corresponding parametric boundary 

conditions made it possible to consider (combine) all existing mathematical models 
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corresponding to certain lawful motions in one model (boundary value problem) [19, 20]. 

The study of the process of filtration of structured fluids in multilayer reservoirs is also 

studied in [21, 22], where a layered reservoir is considered and, moreover, in a productive 

reservoir, the movement occurs horizontally and in the bridges, vertically. 

2 Objects and methods of research 

Let a two-layer reservoir be given, with the lower one being productive (area 1 ), with 

predominant horizontal characteristics, and the other upper layer (area 2 ) considered to 

be a bridge and vertical characteristics predominating in it. Therefore, it can be assumed 

that the fluid motion in the lower region 1 , occur horizontally, and the upper region 2  

vertically. It is assumed that the region 1 is saturated with structured fluids and the upper 

region 2 is saturated with non-Newtonian fluids. 

Assume that at the initial time the reservoir pressure in both reservoirs is constant and 

equal. If at the beginning of time 0t  from wells located at the origin of coordinates (area 

1 ) there is a selection, then the process of reservoir filtration is mathematically 

formulated as follows: It is necessary to find continuous functions  ,u x t and  , ,x z t

as well as unknown boundaries      1 2, , , , , ,R x t R x t x z t from the following 

system of differential equations: 

 

      
11 1 1 1, , , 0; , 0,z h

u v u
u v M x R t t

x x z t
   

    
       

    
  (1) 

        
12 2 2 1 2, , , ; , 0,z h

u v u
u v M x R t R t t

x x z t
  

    
       

    
 (2) 

      
13 3 3 2, , , ; , 0,z h

u v u
u v M x R t L t

x x z t
  

    
       

    
 (3) 

    1, , ; , 0,
v v

v M z h t t
z z t

 
   

     
   

                (4) 

    2, , ; , 0,
v v

v M z t h t
z z t


   

      
   

               (5) 

 

with initial 

 

     0,0 , ,0 , ,u x v x z u x z     (6) 

     1 2 1,0 ,0 0, , ,0 0,R x R x x h      (7) 

 

and boundary 

 

   
1 11 1 0 2 2 0, , ,x R x R

u u
u u

x x
    

 
    

 
 (8) 
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   
2 22 2 0 3 3 0, , ,x R x R

u u
u u

x x
    

 
    

 
  (9) 

   0 0, , ,z z

v v
v v

z z
   

 
   

 
                                (10) 

 

as well as the boundary conditions 

 

   
1

01 1 1 0 1 1 0, , 0,xx
z h

z h

u
u b U q t t

x
   





    


 (11) 

 2 3 3 1, 0, 0, ,x L

u
u t z h

x
  


    


  (12) 

 
23 , 0, 0,z h

v
v t

x
  


   


    (13) 

 

Here: Function  
 , , 1,3;l l l

l

K x
A u l


      

( )K x  
permeability, l coefficients, dynamic viscosity corresponding to three filtration 

zones;  ,l lA u  - functions expressing the mobility of the fluid in these zones and takes a 

specific form corresponding to the indicator curves of the fluid velocity. l -coefficients 

relative to the critical values of the shear gradients. 

 
 1 0, 1

K z
v

v







 
       

at ,v   where  is the viscosity value in the 

anomalous filtration zone. 0 1 0,41142135 ,
v


   [21],  is the dynamic viscosity of 

the fluid at low     pressure gradients.  
 1

,
vK z

Ф v
v


 


 

 
, at v   , 

describes one of the non-linear motions in the region of small pressure gradients in the 

bulkhead. 

   , , , 1,3, , , ,l lM M x t u l M M x z t   
 

well-known functions depending on the 

filtration regime and the types of fluids under consideration (water, gas, oil, condensate, 

etc.) as well as on the structure of the porous medium itself. 

( 1,3)l l  constants depending on the width and height (length) in the layers balancing 

the dimensions of the equations. 

Problem (1)-(13) is generally non-linear and therefore it is difficult and even impossible to 

construct an analytical solution. Under certain assumptions and assumptions regarding the 

parameters and functions, it is possible to construct approximately analytical solutions [16]. 

Problem (1)-(13) is solved by the flow version of the finite difference method [21-23] 
We introduce notation 

   , ,e e e

u
W x t u

x



  


, 1,3e     (14) 
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   , , ,r

v
x z t x v

z
 


 


, 1, 2r                                            (15) 

(at 1, ,r    at 2,r    ) . 

Then problem (1)-(6) takes the form. 

 

11 , 1,3;e
z h e

W u
M e

x t
 

 
  

 
                              (16) 

, 1, 2;r v
M r

z t

 
 

 
                                                 (17) 

 

Conditions (8)-(10) will be written as 

 

   
1 11 0 2 0, , ,x R x RW x t W x t                                     (18) 

   
1 12 0 3 0, , ,x R x RW x t W x t                                    (19) 

   1 0 2 0, , , , .z zx z t x z t                               (20) 

 

Relations (11)-(13) will take the form: 

 

 1 1 0 1 00
, ,x x

W x t b U q  
                                (21) 

 2 3 , 0,x LW x t                                                     (22) 

 
23 2 , , 0.z hW x z t                                                (23) 

 

Problem (16)-(18) is solved as follows: 

Integrating ( 16), on the interval 1 1

2 2

,
i i

x x
 

 
 
 

and applying the mean value theorem for the 

time derivative, we obtain 
 

 1 1

2 2

, , i
i i r iii i

u
W x t W x t M h h

t


 

    
     

   
                     (24) 

 

We integrate relation (17) on the interval 1 1

2 2

,
j j

z z
 

 
 
 

and also performing the same 

operations as with (16) we have 

 

 1 1

2 2

, , , , , , ,i
i i i j ij j

j j
x z t x z t M x z u h

t


 

 

    
    

   
  (25) 

 

E3S Web of Conferences 401, 01086 (2023)

CONMECHYDRO - 2023
https://doi.org/10.1051/e3sconf/202340101086

5



where 
1 1 1 1

2 2 2 2

,i j
i i j j

h x x h z z
   

    . 

In order to save the amount of work, we do not write down the fully obtained ratio in the 

future, but state the verbal form of the work done. In expression (24), passing to the 

difference relations over (equivalent to integration (24) over the variable t on the segment 

 1,k kt t 
), we write (24) and (25) as 

 

1 1

2 2

, 1,2, , 1,i i i
i i

W W c u d i N
 
          

1 1 ,

2 2

, 1,2, , 1,i jj k
j j

c d j N  
 
     

 
 

where  1 1

2 2

, , ,k i i k
i i

W W x t u u x t
 

 
  

 

. 

In the future, the course of the constructed computational formulas will be presented in a 

descriptive form: 

We integrate from the beginning [23, 24] equality (24) and (25) with respect to the variable 

t on the interval  1,k kt t 
and also (14) on the interval  1,i ix x (15) to 1,j jz z

   obtain a 

system of grid difference equations for the flows and sought functions with the 

corresponding initial and boundary and also boundary flow conditions. 
The constructed flow-difference boundary value problems are solved using the flow version 

of the difference sweep [8, 21–28]. 

The sweep coefficients are determined using the appropriate equation and boundary 

conditions. 

The obtained algorithms make it possible to calculate the value of both the desired 

functions and the flow at the nodes of the grid area. 

On the boundaries of the zones  i kR t and using the conditions of equality of flows, 

 ,j kz t the sweep coefficients are determined and then it is possible to calculate the 

boundaries of these zones and the moving unknown boundary of the upper layer. In this 

case, the accuracy of computational schemes in the limit  2 .o h    

3 Results and their discussion 

The sequence of calculation of the developed algorithms is as follows: From the beginning 
with respect to non-linear terms, linearization is carried out using the iteration method; 

Since at the beginning of the calculations the value of the flow from the bridge to the 

reservoir is unknown, then within one time step we proceed as follows: first, we consider 

there is no flow and solve the problem in the reservoir. Next, the problem is solved on the 

jumper and, using the known value of the flow, the problem is again solved in the reservoir. 

In further time steps in the solution process in the area, 1 the flow value from 2 is 

taken from the value from the previous time step. In this case, at each time step , the 

position of the zone boundary in the region is determined 1 by comparing the magnitude 

of the flows on the left and right in each zone boundary. In the region, 2 too, at every 
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step along
kt  border is defined  kt  by comparing the flows in the direction of the 

variable z . To improve the accuracy of perturbation boundary values, it is proposed to use 

the “shuttle” iteration method [21] or the simple iteration method. To test the model and 

establish the performance of computational algorithms, hypothetical data of the form: 

0 50q  t/ s ; 100 t/s ; 0; 0,01; 0,1; 0,3. 0,005; 0,01; 0,02 :k    

1 2 00,018, 0,017, 0,27. 1 (100 )v m m u atm      

Separate fragments of the results are shown in Figures 1- 4 as well as in tables 1 and 2. 

 

 
Fig. 1. Distribution of pressure in the reservoir 𝑡 = 0.1; 𝑡 = 0.2; 𝑡 = 0.3; 𝑡 = 0.5 for Newtonian fluids 
 

 
Fig. 2. Pressure distribution in the bulkhead at 𝑡 = 0.1; 𝑡 = 0.2; 𝑡 = 0.3; 𝑡 = 0.4. 
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Fig. 3. Change in the flow function at 𝑡 = 0.1; 𝑡 = 0.2; 𝑡 = 0.3. 
 

 

Fig. 4. Change of the perturbation boundary in time t in the upper layer ( 2 ) with non-linearity of 

the law of motion 

 

Table 1 shows the change in pressure in a well-permeable reservoir during Newtonian fluid 

filtration: where 𝛽𝑖 = 0; 𝑞0 = 50
𝑡

𝑠
;  𝜇 = 0; 𝑚 = 0.27;  𝜇 = 0.01

𝑔

𝑠𝑚2𝑠𝑒𝑐
. 

Table 1. 

𝑡𝑥  0 0.1 0.2 0.3 0.4 

0.1 0.8253 0.8043 0.9315 0.9605 0.9702 

0.2 0.7614 0.8218 0.8721 0.9012 0.9171 

0.3 0.7072 0.7615 0.8130 0.8615 0.8816 

 

Below in table 2 for 5 30,2, 0,5 10 ; 10 , 0,3, 0,18, 0,005, 1.m m x            

5 , 80 .b m h m  q = 50 t/s 0, 1u   

given changes in pressure in  , for different   points 0x   in time: 
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Table 2. 

t  0   510   
210   

0.01 0.98150 0.97502 0.92163 

0.05 0.95261 0.93121 0.89121 

0.2 0.92110 0.90422 0.87125 

0.15 0.89216 0.87134 0.84786 

Flow value 

0.01 0.12143 0.10346 0.08732 

0.05 0.18314 0.16342 0.11425 

0.1 0.21210 0.19121 0.16522 

0.15 0.25146 0.22751 0.19344 

 

4 Conclusions 

Numerical experiments show that when 41 10
K

K

 extracting fluid from a dam, using a 

well-permeable formation does not give the desired effects. 

With a nonlinear law of filtration in the area for a zone with a large pressure gradient, a 

rapid increase in the amount of overflow from 1 the bridge is characteristic, and for an 

anomalous zone, this value directly depends on the degree of anomaly. By controlling the 

values of the flow, as well as the perturbation gradients, depending on the rate of 
production from a well-permeable reservoir, it is possible to achieve the highest recovery of 

the reservoir being developed. Thus, the constructed mathematical model of the filtration of 

structured fluids in a two-layer reservoir, as well as the developed computational 

algorithms, can be used to develop hydrocarbon deposits with a similar geometry proposed 

in this model, which allows continuous delivery through pipelines for CHP generating 

electrical energy. 
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