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Abstract. For the first time, the influence of temperature and a transverse 
strong magnetic field on the oscillations of the density of energy states is 
studied in the conduction band of heterostructures with quantum wells 
HgCdTe/CdHgTe. Analytical expressions are derived for oscillations of 

the density of states in quantum-dimensional heterostructural materials in 
the presence of transverse quantizing magnetic fields with a parabolic 
dispersion law. A new mathematical model has been developed for 
calculating the temperature dependence of the density of states oscillations 
in nanosized heterostructural materials under the action of a transverse 
quantizing magnetic field. 

1 Introduction 

At present, the interest in applied and fundamental research in the field of condensed matter 

physics has shifted from bulk materials to nanoscale semiconductor structures. Of particular 

interest are the properties of the energy spectrum of charge carriers in low-dimensional 

semiconductor structures under the action of a quantizing magnetic field. Quantizing the 

energy levels of free electrons and holes in a quantizing magnetic field leads to a significant 

change in the type of oscillations in the density of energy states in heterostructural materials 

with quantum wells [1, 2]. 

In heterostructural materials based on quantum wells, the study of the dependence of the 

density of energy states on the magnitude of the quantizing magnetic field and occupation 

provides valuable information on the energy spectra of charge carriers in nanoscale 
semiconductor structures. When exposed to transverse quantizing magnetic fields in low-

dimensional semiconductor materials, the density of states was measured from oscillating 

dependences of kinetic, dynamic, and thermodynamic quantities - magnetoresistance, 

magnetic susceptibility, electronic heat capacity, thermoelectric power, Fermi energies, and 

other physical parameters [3, 4]. From this, it follows that studying oscillations in the 

density of energy states in the conduction band of a rectangular quantum well in the 

presence of a transverse and longitudinal magnetic field is one of the urgent problems of 

modern solid-state physics. 
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In particular, in works [5-7] was considered the calculations of the density of states of 

Landau levels in two-dimensional electron gases are considered for a uniform perpendicular 

magnetic field and a random field of arbitrary correlation. A semiclassical approach of path 

integrals has been developed for a random field of arbitrary correlation, and this provides 

an analytical solution for the density of states of Landau levels. The deviation of the density 

of states from the Gaussian form increases as the correlation length decreases and the 

magnetic field weakens [3-5]. 

Despite the progress achieved in these works, some questions remain open in them, 

such as the dependence of the density of states on temperature and on a quantizing 

magnetic field in two-dimensional semiconductor materials and how to determine the 

temperature dependence of the density of states in a transverse and longitudinal quantizing 
magnetic field in low-dimensional materials, taking into account thermal smearing. 

This work aims to simulate the effect of a transverse quantizing magnetic field and 

temperature on oscillations of the density of states in heterostructural materials based on 

quantum wells.  

2 Methods 

According to the band theory of a solid, the wave function of a free electron, in the 

presence of an external field, is a solution of the stationary Schrödinger equation with a 

parabolic dispersion law [8-13]: 
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Here, V(r) is the energy of free electrons in the presence of an external field, E is the energy 

of charge carriers in the absence of an external field, 
( )r

 is the wave function. The 

dependence of the quantizing magnetic field on the wave function of electrons and the 

energy spectra of charge carriers in two-dimensional electron gases is determined using Eq. 

(1), in which the momentum operator should be replaced by the generalized momentum 

operator in a quantizing magnetic field: 
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Here, A is the vector potential of the induction of a strong magnetic field,  ( )B rot A . To 

solve equation (2), the direction of the vector B is chosen in two different ways. In the first 

case, this vector will be directed along the plane of the two-dimensional layer (along the X-

axis) and perpendicular to the Z-axis. For a longitudinal quantizing magnetic field, vector 

potential A can be chosen in the form of  0, ,0A Bz  . 
k m  from the Schrödinger 

equation (2), for a deep rectangular quantum well, takes the following form: 
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In a quantizing magnetic field, if the width of the quantum well increases, the energy 

spectrum of free electrons will increase. That is, a
eB

  . Here, a is the width of 

the quantum well,   is the magnetic length, which is equal in magnitude to the radius of the 

characteristic orbit of an electron in a quantizing magnetic field. Hence, the discrete energy 

levels En will be equal to the energies of the harmonic quantum oscillator:  

 

1
, 0,1,2,3....

2
N cE N N

 
   

 
   (4) 

 

Where, 
1

2
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is the energy of motion of a free electron in the XZ plane, these 

energies are called discrete Landau levels. 

In three-dimensional and two-dimensional electron gases, a change in the energy spectrum 

of charge carriers leads to a change in the oscillation of the density of states in a quantizing 

magnetic field. In works [14, 15], an analytical expression was derived for oscillating the 

density of states in three-dimensional electron gases in the presence of a quantizing 

magnetic field with a nonparabolic dispersion law. The temperature dependence of the 

oscillations of the density of energy states in a strong transverse magnetic field was 
discussed there. 

Now, consider the dependence of the oscillations of the density of states on the transverse 

quantizing magnetic field in a rectangular quantum well or two-dimensional electron gases. 

In this case, the magnetic field is directed along the Z axis and will be perpendicular to the 

XY plane. Here, the energies of free electrons are quantized (discretely) along the Z axis, 

and charge carriers move freely.   

Can select the vector potential of the magnetic induction in the form of  0, ,0A Bx . 

Hence, by solving equation (1), instead of formula (3), we can obtain the following 

function: 
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 is the envelope function of the dimensional 

quantization levels of the quantum well [12].  0Nf x x  is a solution to the Schrödinger 

equation with zero boundary conditions for a quantum harmonic oscillator. In the same 

solution, the equation takes the following form: 
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Here, 0

yk
x

eB
  . The eigenvalues of the energies ENare called discrete Landau levels, 

corresponding to the functions from (5). In a deep rectangular quantum well, the discrete 

energy spectrum of dimensional quantization is: 
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Hence, taking into account formulas (4) and (7), the energy eigenvalue ENmis determined by 

the following formula: 
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As can be seen from the formula, the motion of free charge carriers in all three 

directions is limited, and in a transverse quantizing magnetic field, the quantum well 

becomes an analog of a quantum dot. In addition, the energy spectrum of free electrons will 

be completely discrete; each level in it is characterized by two quantum numbers: NL (N = 
NL is the number of Landau levels) and NZ (m = NZ is the number of quanta in the Z axis). 

Then, for a transverse quantizing magnetic field in two-dimensional electron gases, the 

oscillation of the density of states, normalized to a unit area, has the form of a sum of delta 

functions: 
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Thus, in the presence of a transverse quantizing magnetic field corresponding to 

formula (9), it is possible to calculate the oscillations of the density of states 
heterostructures with quantum wells. But, both formulas do not consider thermal smearing 

in discrete Landau levels. 

Effect of Temperature and a Transverse Strong Magnetic Field on Oscillations of the 

Density of Energy States in Heterostructures with Quantum Wells. 

Let us now consider the temperature dependence of the oscillations of the density of 

states in low-dimensional solids under the action of a transverse quantizing magnetic field. 

As is known, the effect of temperature on the Landau levels can be described by expanding 

the oscillations of the density of energy states into a series in terms of delta-shaped 

functions [14-16]. The study of the oscillations of the density of energy states using the 

series expansion in terms of delta-shaped functions made it possible to explain the 

temperature dependence of discrete Landau levels in two-dimensional semiconductor 
materials. The temperature dependence of the oscillations of the density of states is 

determined by the thermal smearing of discrete Landau levels in a quantizing magnetic 

field. At absolute zero temperature, the Gaussian distribution functions are delta-shaped and 

are defined by the following expression [16, 17]: 
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Then, thermal smearing can be described by the temperature dependence of the 

Gaussian distribution function. The thermal smearing of discrete Landau levels with energy 

 ,L ZE N N is determined by the Shockley-Reed-Hall statistics [15-17]. Formula (9) does 

not consider the thermal smearing of discrete Landau levels. If  2

, , , ,d

S ZN E B T d  is 

expanded into a series in terms of Gaussian functions, then the temperature dependence of 

the oscillations of the density of energy states in two-dimensional electron gases can be 

considered. In this way, one can obtain the temperature dependence of the oscillations of 

the density of states in a transverse quantizing magnetic field. At low temperatures, the 

Gaussian distribution functions turn into a delta-like function of the form: 
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Thus, with the help of formulas (8), (9), (10), and (11), we obtain the following 

analytical expressions: 
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(12) 

 

Here,  2

, , , ,d

S ZN E B T d is oscillations of the density of energy states for an infinitely 

deep rectangular quantum well; d is the thickness of the quantum well; NL is the number of 

Landau levels for a rectangular quantum well; NZ is the number of quanta along the Z axis; 
B is the induction of the transverse quantizing magnetic field.  

This formula is the temperature dependence of the oscillation of the density of energy 

states in two-dimensional semiconductor materials when exposed to a transverse quantizing 

magnetic field. The obtained expression is convenient for processing experimental data on 

oscillations of the density of energy states in two-dimensional electron gases at different 

temperatures and in transverse magnetic fields. Thus, a mathematical model has been 

obtained that describes the temperature dependence of the oscillations of the density of 

states in nanoscale semiconductor structures. 

3 Results and discussion 

Now, for specific nanoscale semiconductor materials, we analyze the temperature 

dependence of the oscillations of the density of states in a transverse quantizing magnetic 

field. In work [18], the energy spectra of cyclotron resonance of free electrons in 

asymmetric heterostructures with HgCdTe/CdHgTe quantum wells were determined in a 

quantizing magnetic field. Here, the thickness of the CdxHg1-xTe quantum well is d=15 nm, 

the magnetic field is B=15 T, and the temperature is T=4.2 K. These papers did not discuss 

the temperature dependences of the density of states  2

, , , ,d

S ZN E B T d  for these 

materials. Figure 1 shows the oscillations of the density of energy states for the quantum 
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well CdxHg1-xTe d=15 nm [18] at T=4.2 K and with a transverse quantizing magnetic field 

B=15 T. There  2

, , , ,d

S ZN E B T d  is calculated using formula (12). 

In Figure 1, the number of discrete energy levels is ten. These discrete energy peaks are 

called Landau levels (NL=10), which are observed in the conduction band. It shows 

oscillations of the density of energy states in a quantizing magnetic field 0,02c eV   

at T=4.2 K, kT=4.10-4 eV, 50, .c

ckT
kT


   In this case, the thermal smearing of 

the Landau levels is very weak, and the oscillations in the density of energy states do not 

feel a deviation from the ideal shape. The first discrete Landau level (NL=0) appeared at the 

bottom of the conduction band of the quantum well. The second (NL=1), third (NL=2), and 

other discrete Landau levels are located above the bottom of the conduction band of the 

quantum well. This way, one can calculate the Landau level peaks in the quantum well 
valence band at low temperatures. Figure 2 are shown temperatures of 4.2 K, 20 K, 40 K, 

60 K, 80 K, and 100K. It can be seen from Figure 2 that with increasing temperature, the 

sharp peaks of Landau levels begin to smooth out, and at sufficiently high temperatures, 

discrete energy densities of states turn into continuous energy spectra. These results were 

obtained for a constant quantum well thickness and magnetic field. Using formula (12), one 

can calculate the dependence of the quantum well thickness on the oscillation of the density 

of energy states with a parabolic dispersion law. 

 

 

Fig. 1. Oscillations of density of energy states in heterostructures with quantum wells 
HgCdTe/CdHgTe(CdxHg1-xTe quantum well, d=15 nm [18]) at B=15 T and T=4.2K. Calculated by 
formula (12). 
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Fig. 2. Effect of temperature and a transverse strong magnetic field on oscillations of density of 
energy states in heterostructures with quantum wells HgCdTe/CdHgTe calculated by formula (12). 

4 Conclusion 

Based on the study, the following conclusions can be drawn: Analytical expressions for 

oscillations of the density of states in heterostructural materials with quantum wells in the 

presence of transverse quantizing magnetic fields are derived. A new mathematical model 

has been developed to determine the temperature dependence of the oscillations in the 

density of energy states in two-dimensional semiconductor materials in the presence of a 

transverse quantizing magnetic field. It is shown that with increasing temperature, the 

discrete Landau levels are smoothed out due to thermal smearing, and oscillations in the 

density of energy states are not observed in heterostructural materials with quantum wells. 

The proposed mathematical model makes it possible to calculate the high-temperature 

density of states for the HgCdTe/CdHgTequantum well. It is shown that the discrete 

Landau levels in the HgCdTe/CdHgTe quantum well, measured at T=4.2 K, transform into 
a continuous energy-state density spectrum at high temperatures (T=100 K). 
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