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Abstract. The impact of a rigid body and a rod of finite length made of a 
viscoplastic incompressible material moving towards each other at constant 
velocity is studied in the article. One-dimensional motion is considered, 
i.e., velocity, stress, and other parameters are considered to be averaged 
over the rod section. According to the model of a viscous-plastic material, 
the rod is divided into two parts: the region of plastic strain and the region 

that moves as a solid body after impact. The boundary between these 
regions is unknown and needs to be determined. As a result, we arrive at a 
problem with a free boundary, a well-known example of which is the 
Stefan problem. However, the formulation of the problem under 
consideration differs significantly from the Stefan problem. In addition, the 
function to be determined that describes the unknown boundary, in contrast 
to the Stefan problem, is not explicitly present in the boundary conditions. 
There are various numerical methods for solving problems with an 

unknown moving boundary. However, as is known, implementing these 
methods is associated with significant difficulties. In this article, the 
method of integral relations is used - a modification of the Karman-
Pohlhausen method known in the boundary layer theory. The problem is 
reduced to the Cauchy problem for a system of nonlinear ordinary 
differential equations proposed to be solved by successive approximations 
and the Runge-Kutta method. Numerical calculations were performed. The 
influence of changes in the mass and magnitude of the velocities of the rod 
and rigid body on the size of the plastic strain region and the change in 

stresses on the contact surface is revealed. 

1 Introduction 

Numerous studies were devoted to the theory and problems of the impact of various rigid 

bodies (elastic, semi-elastic, and plastic ones) [3-6, 7-8, 9-11, 12-14, 17-20, 23-26]. In [14], 
extensive information is given, mainly on the theory of the impact of elastic bodies. At that, 

great attention is paid to Hertz's theory of considering local effects that arise in the vicinity 

of the points of contact between the surfaces of colliding bodies. Some semi-empirical 

solutions on the longitudinal impact of semi-elastic and elastic-plastic rods are also given. 

In [7], exact analytical solutions to the problems of impact and collision were obtained, 

taking into account friction on the lateral surface of the rod: longitudinal impact on a semi-

infinite rod; the Saint-Venant problem; impact on a semi-infinite elastic-plastic rod by 
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instantaneously imparting constant deformation and constant velocity to the end of the rod. 

Nonstationary motions of viscous-plastic bodies and viscous-plastic fluid flows were 

considered in [6, 7-8, 10, 12, 17-21, 28]. In [28], an analysis of exact and approximate 

solutions to nonstationary problems of viscous-plastic flows was given. 

1.1 Statement of the problem of the collision of a rigid body and a 
viscoplastic rod 

In this article, the authors study the collision problem between an absolutely rigid body and 

a rod of finite length l  made of a viscous-plastic incompressible material moving towards 

each other. Time t  is counted from the moment of impact, and the Ox -axis is directed 

along the axis of the rod. Let the rod move translationally in the direction of its axis with 

velocity 
OCv  before the impact, and the body moves with constant velocity 

Тv  in the 

positive direction of the Ox -axis. The part of the surface of the colliding body and the 

section of the rod  0x   that come into contact are assumed plane and perfectly smooth. 

We consider one-dimensional motion; that is, stresses, velocity and other parameters are 

considered to be averaged over the section of the rod. As is known, the equation of motion 

has the following form [15]. 
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where  v x,t  is the velocity of motion of the rod sections,  ,x t   is the stress, and   

is the density of the rod material. 
It is assumed that the constitutive ratio of the material of the viscous-plastic rod has the 

form [7, 10]: 

 

 

                (2) 

 

where 0   is the ultimate stress,   is the viscosity coefficient of the material.  

In the case of an instantaneous impact, due to (1), the rod at t>0 is divided into two 

parts: the part of the rod adjoining the impacted end 
    0 00 , 0 0x x t x  

, where the 

viscous-plastic flow occurs, and the remaining part 
  0x t x l 

, which moves as a non-
deformable rigid body. The equations of motion in these regions, according to (1) and (2), 

have the following form [7, 10] 
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from (4), it follows that in the rigid region. 
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where  0v t  is the velocity of motion of the rigid region of the rod to be determined. 

The equation of motion of a rigid region has the form 
 

  0
0 0 0 0

( )
( ( ) 0, ) F , ,c

dv t
M x t t M l x t

dt
         (6) 

 

where 
0M  is the mass of the rigid region of the rod, 

cF  is the cross-sectional area of the 

rod. 

It is required to find a solution to equations (3) and (5) and function  0x t - the interface 

between the above two parts of the rod that satisfy the following conditions: 
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where 
TM  is the mass of the rigid body. 

2 Methods 

We introduce dimensionless variables: 
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In this case, equations (3), (6), and conditions (7)-(10) are reduced to the forms (11), (12), 

and (13) - (15) 
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where 0

T

l
s

v




  is the Saint-Venant parameter, c c

T T

F l M
m ;

M M


   condition (9) is taken 

into account in (12), and the defining relation (2) is taken into account in (13). 

Thus, the impact problem under consideration was reduced to solving a nonlinear problem 

with an unknown moving boundary - equations (11) and (12) with conditions (13) - (15). 
The formulated problem (11) - (15) is solved, as noted above, by the method of integral 

relations [8]. In this case, the solution to equation (11) is sought in the form of a 

polynomial, which for the n-th approximation has the following form 
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where  0 1 2ia ( ), (i , , ,..n)   and 0 ( )   are the functions to be determined.  

In the case of the first approximation, the sought-for solution, according to (16), has the 

following form 
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where functions  0   and  0a ,  1a ,   2a   are to be defined. According to the 

method of integral relations, the desired solution satisfies equation (11) on average, i.e., 

following the integral relation 
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Satisfying conditions (15), we find 

 

1 0 0 2 0 02( ),a a u a a u     .    (19) 

 

Further, satisfying condition (13), we obtain the following equation 
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0
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Substituting (17) and (19) into (18) and after performing the integration, taking into account 

the second condition (15), we obtain the equation 
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Thus, the problem of finding an approximate solution to problem (11)-(15) was reduced 

to solving the Cauchy problem for a system of three nonlinear equations of the first order 

(12), (20), and (21) under the following initial conditions 

 

2 0
0 0 0 0 0(0) 0, (0) (0,0) 1, (0) ( 0).c

T

v
a u u V V

v
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This problem can be solved by the method of successive approximations by reducing 

the problem (12), (20) - (21) to an equivalent system of integral equations. 

At the same time, using the contraction mapping principle [22], it is easy to prove that the 

following assertion holds: for small values  , there is a unique solution to this system of 

integral equations. 

3 Results and Discussion 

Numerical calculations can be carried out by the method of successive approximations. 

However, the resulting error may not be small enough. Then, to obtain a solution with an 

allowable error, a large number of iterations may be required, the implementation of which 

is associated with cumbersome calculations. In this regard, the Cauchy problem for 

nonlinear differential equations (12), (20) - (21) is solved by the Runge-Kutta method of 

fourth-order accuracy using the Maple system. The calculation results are shown in Figs.1 

and 2 for the case 0(0,0) (0) 1u a  , 
0 0(0) 1u V  . 

 

 

Fig. 1. Calculation results for three values of parameter :c

T

M
m

M
  
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1 – m=1.5, 2 – m=1, 3 – m=0.5 for fixed Saint-Venant parameter s=5;  

4 – m=1.5, 5 – m=1, 6 – m=0.5  for fixed Saint-Venant parameter s=0.5. 

As seen from the figure, 0  increases 0 0
d

d





 
 

 

 (the viscous-plastic region 

0(0 )   expands) up to certain time 
M  . Then 

0 decreases and at some 

time 
0 M     becomes zero (the viscous-plastic region disappears). In this case, the 

influence of the change in parameter 
c Tm M M - the ratio of the mass of the rod to the 

mass of the rigid body on the value of 
M  - the time the viscous-plastic strain region 

reaches the maximum size, is insignificant. The time of reaching the maximum size of the 

viscous-plastic strain region is practically the same for all values of m. However, time 
0  

of vanishing  0 0   of the viscous-plastic strain region depends strongly on the 

parameter 
c Tm M M , namely, the duration of the existence of the viscous-plastic strain 

region decreases quite significantly with an increase in m: 

0 0.5702   for m=0.5;  
0 0.2859   for m=1.5. 

As seen in Fig. 1, the Saint-Venant parameter also has a significant effect on the 

duration of the existence of a viscous-plastic strain region. The larger the parameter s, the 

shorter the duration of the existence of the region of the rod where viscous-plastic strain 
occurs: 

0  =0.5274  for s=0.5; 
0  =0.1386  for  s=5. 

 

 

Fig. 2 Calculation results for two parameter values  s=0.5 and s=5:  
1 – m=1.5 ; 2 – m=1, 3 – m=0.5   when V0=2;  4 – m=1.5 ; 5 – m=1, 6 – m=0.5  when V0=1. 

 

As seen from Fig.2, the larger the parameter m, and vice versa, the smaller Vo, the shorter 

the duration of viscoplastic deformation. At the same time, the influence of these 

parameters on the time to reach the maximum length of the viscoplastic deformation section 

is insignificant. 

The pattern of the influence of the Saint-Venant parameter is similar for different initial 
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velocities of the rod and rigid body. For example, for 
0 0V  , i.e., the impact of a rigid 

body on a fixed rod, the pattern of the influence of the Saint-Venant parameter is similar to 

the case for V0>0 (Figs.1 and 2), but  2

0 M   and the duration 
0 of the existence of a 

viscous-plastic region is less than in the case when the rigid body and the rod move towards 

each other at constant velocity  0 0V   (Table 1). 

Table 1. Change in
2

0 ( )М   and 
о  depending on 

M  and s for m=1. 

s 0.5 0.5 0.5 5 5 5 

Vo 0 1 1.5 0 1 1.5 
2

0 ( )M   0.7124 0.8343 0.8653 0.2231 0.3488 0.3962 

0  0.2659 0.3674 0.3674 0.0613 0.1025 0.1194 

M  0.08 0.0847 0.086 0.03 0.045 0.051 

 

Here, for s=0.5 and s=5, the greater 
0 0c TV v v , the greater 

0 ( )М   and 
0 . However, 

the time to reach the maximum size of the viscous-plastic strain region М  increases with 

an increase in Vo only for s=5 and practically does not change for s=0.5. 

 

 

Fig. 3. Change in stresses   0 ,     at different values of parameter m and velocity V0 for 

a(0)=1, s=0.5: curve 1 – (m=1, V0=0) , curve 2 -  (m=0.5 , V0=0 ), curve 3 - (m=0.5  , V0=1), curve 4 
- (m=1 , V0=0.5 ), curve 5 - (m=1 , V0=1 ). 
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Fig. 4. Change in stress   0 ,     at different values of parameter m and velocity V0 for 

a(0)=1,  s=5: curve 1 - (m=1, V0=0); curve 2 - (m=0.5, V0=0 ); curve 3 - (m=0.5 , V0=1 ); curve 4 - 
(m=1, V0=0.5 ); curve 5 - (m=1 , V0=1). 

 

Figures 3 and 4 show graphs of the change in stresses relative to its threshold value 

 

0

0, 



 
 
 

 at the end of the rod. In all cases shown in Figs.3 and 4, the stress is 

(0, ) 0as     and
0

0

(0, )
1 as

 
 


  . For the cases s=0.5 and 

s=5, curves 1 and 2 intersect. This is explained for s=0.5 by a decrease in the duration 0  

of the existence of the viscous-plastic strain region with an increase in parameter m (Fig.1 

and 2), and for s=5 - by an increase in duration 0  with an increase in 0
0

c

T

v
V

v
  (Table 1). 

The intersection of the curves that show the relative stresses can occur at a small increase in 

these parameters. 

Graphs of the change in velocity (  0a  ) of the left end of the rod and velocity (  0u 

) of section  0    for different values of Vo   0 0 1a    are shown in Figs.5 

(s=0.5, m=1) and 6 (s=5, m=1). 
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Fig. 5. Graphs of functions  0a   (curves - 1,3,5) and  0u   (curves - 2,4,6) for s=0.5 ,m=1, 

 0 0 1a  : 1 and 2 (Vo=0 );  3 and 4 (Vo=1); 5 and 6 (Vo=1.5 ) for s=0.5. 

 

 

Fig. 6. Graphs of functions  0a   (curves -1,3,5) and  0u   (curves -2,4,6) for s=5, m=1, 

ао(0)=1:1 and 2(Vo=0.5);  3 and 4 (Vo=1);  5 and 6 (Vo=1.5) for s=5. 
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The closure of the curves represents, respectively, the functions 
0 ( )a   and 

0 ( )u   

occurs at the point  0 0 0 0 0, ( ) ( )a u    , i.e., at the moment of disappearance of the 

viscoplastic deformation area. 

3.1 Verification of the proposed method 

According to the studies in [7-8, 10], in which various problems were solved by the method 

of integral relations, satisfactory results were already obtained in the first approximation. 

This is confirmed by the following test example, which has an exact solution. The 

following function 

 

22
( , ) ( ), erfcz exp( )

2 z

v erfc x dx


 
 



    (23) 

 

is an exact solution to equation (11) that satisfies the following initial and boundary 

conditions: 

 
𝜈(𝜉, 0) = 0, 0 < 𝜉 < ∞;     (24) 

 

𝜈(𝜉, 0) = 1, 𝜈(𝜉, 𝜏); → 0 𝑓𝑜𝑟 𝜉 → ∞, 𝜏 > 0.   (25) 

 

The first approximation, according to (17), has the following form 

 

2

1 0 1 2

0 0

( , ) ( ) ( ) ( )( ) ,
( ) ( )

v a a a
 

    
   

     (26) 

 

Satisfying conditions (23) and (24), we obtain 
0 1 2( ) 1, ( ) 2, ( ) 1a a a      . 

In this case, equation (20) and its solution - the first approximation (26) - take the following 

form, respectively 

 

 

(27) 

 
2

1( , ) ( , ) 1 2 .
1212

v v
 

   


         (28) 

 

Figure 7 compares the graphs for the exact solution (23) with the first approximation (28). 

As follows from Fig.7, the first approximation agrees with the exact solution. 

2
20

012, . . 12 ,
d

те
d


 


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Fig.7. Graphs of ( , )v    depending on  : 1 - exact solution (23), 2 - first approximation (28) for 

0.25  ; 3 - exact solution (23), 4- first approximation (28) for 0.5  . 

4 Conclusions 

1. The statement of the problem of the impact of a rigid body and a viscous-plastic 

rod was formulated. 

2. Using the method of integral relations - a modification of the Karman-Pohlhausen 

method, the problem posed was reduced to the Cauchy problem for three nonlinear 

differential equations of the first order. 

3. The results of calculations are shown in the form of graphs. A qualitative and 

quantitative analysis of the numerical results obtained was conducted. 

References 

1. Okulov N.A. On a numerical method for solving one-dimensional Stefan-type 
problems. Computational methods and programming. 2011. V. 12. No. 2. P. 238-246. 

2. Colin Rogers . On a class of reciprocal Stefan moving boundary problems. Zeitschrift 

für angewandte Mathematik und Physik volume 66, pages2069–2079 (2015). 

3. Sultanov K., Khusanov B., Rikhsieva B. Interaction of a rigid underground pipeline 

with elasticviscous-plastic soil. CONMECHYDRO – 2020 IOP Conf. Series: Materials 

Science and Engineering 883 (2020) 012038 IOP Publishing doi:10.1088/1757-

899X/883/1/012038. 

4.  Ivan Shatskyi, Vasyl Perepichka, Maksym Vaskovskyi.  Longitudinal waves in an 

elastic rod caused by sudden damage to the foundation . Theoretical and applied 

mechanics. 48 (2021) Issue 1, 29–37. https://doi.org/10.2298/TAM200615001S. 

5.  Kiselev A.B. ,  Serezhkin A.A. The distinctive features of the collision between an 

 

E3S Web of Conferences 401, 02003 (2023)

CONMECHYDRO - 2023
https://doi.org/10.1051/e3sconf/202340102003

11

https://link.springer.com/article/10.1007/s00033-015-0506-1#auth-Colin-Rogers
https://link.springer.com/journal/33
https://link.springer.com/journal/33
https://doi.org/10.2298/TAM200615001S


elastoplastic cylinder and a non-deformable obstacle. Journal of Applied Mathematics 

and Mechanics, Volume 79, Issue 4, 2015, Pages 403-410. 

https://doi.org/10.1016/j.jappmathmech.2016.01.011. 

6.  Duong Tuan Manh. Normal Impact of A Rigid Cone-shaped against A Viscoelastic 

Plate on Viscoelastic Foundation. VNU Journal of Science: Mathematics – Physics, 

Vol. 37, No. 4 (2021) 95-101. 

7. Barenblatt G.I., Ishlinsky A.Yu. On the impact of a viscous-plastic rod on a rigid 

barrier. AMM, vol. XXVI, 1962. 

8. Barenblatt G.I. On some approximate methods in the theory of one-dimensional 

nonstationary filtration. News of AS USSR. Ser. Tech. Sci.1954, No.9.P.35-49. 

9. Begmatov A, Mamatova N.T. The problem of sudden loading of an elastic-plastic rod 

interacting with the environment. Problems of Mechanics, No. 2, 2019. –p. 44-52. 

10. Begmatov A, Khusanova B.B. On the problem of the impact of a viscous-plastic rod on 

a rigid barrier. Proc. of the international scientific conference "Actual problems of 

applied mathematics and information technologies", Al-Khwarizmi, 2014, Tashkent. 

11. Ishlinsky A.Yu., Ivlev D.D. Mathematical theory of plasticity. –M.: Fizmatgiz, 2001. 

707 p. 

12. Bityurin A. Mathematical modeling of the amplitude of transverse oscillations of 

homogeneous rods under longitudinal impact. Proc. of the Russian Academy of 

Sciences. Mechanics of Rigid Body, 2021, no. 2, p. 98-109. 

13. Bityurin A. Simulation of the maximum deflection of a stepped rod with an initial 

curvature upon impact with a rigid barrier. Proc. of the Russian Academy of Sciences. 

Mechanics of Rigid Body, 2019, no. 5, p. 131–141. 

14. Kilchevsky N.A. Theory of collision of solid bodies. -Kiev: Naukova Dumka, 1969. 

246 p. 

15. Reddy J.N. An Introduction to Continuum Mechanics, Second Edition.-Cambridge 

Univ. Press, 2013. 450 p. 

16. Bondar V.S., Danshin V.V. Thermoviscoplastic cyclic deformation and destruction of 

materials. Izvestiya MSTU "MAMI", Russia, 2014. 

17. Kiselev A.B. On the study of the process of unsteady expansion of thick-walled 

spherical and cylindrical viscoplastic shells, Vestn. Moscow university Ser. 1. Matem., 

mekh., 2012, no. 6, 20–25; Moscow University Mechanics Bulletin, 67:5-6 (2012), 

116–121. 

18. Yaparova N.M.. Method for predicting the temperature state of a cylinder during heat 

treatment under conditions of incomplete initial information Bulletin of the South Ural 

State University 'FSAEIHE South Ural State University (National Research 

University), 2019. 

19. Bondar V.S. Danshin V.V. Thermoviscoplastic deformation and destruction of 

materials. Proceedings of MSTU, MAMI, No. 4 (22), 2014, v. 4 

20. Bondar V.S., Danshin V.V., Kondratenko A.A. Thermoviscoplastic variant. // Bulletin 

of PNRPU, .Mechanics No. 1., 2016 

21. Kantorovich L.V., Krylov V.I. Approximate methods of higher analysis. -M-L.: 

Fizmatgiz, 1962. 

22. Nikitin L.V. Statics and dynamics of rigid bodies with external dry friction. - M.: 

Moscow Lyceum, 1998. - 272 p. 

23. Manzhosov V.K. Simulation of the process of transformation of a longitudinal strain 

wave at the boundary of heterogeneous sections of a rod with a concentrated mass. 

 

E3S Web of Conferences 401, 02003 (2023)

CONMECHYDRO - 2023
https://doi.org/10.1051/e3sconf/202340102003

12

https://www.sciencedirect.com/journal/journal-of-applied-mathematics-and-mechanics
https://www.sciencedirect.com/journal/journal-of-applied-mathematics-and-mechanics
https://www.sciencedirect.com/journal/journal-of-applied-mathematics-and-mechanics/vol/79/issue/4
https://doi.org/10.1016/j.jappmathmech.2016.01.011


Bulletin of UlGTU 1/2001 

24. Manzhosov V.K. Transformation of a Longitudinal Strain Wave of Constant Intensity 

at the Boundaries of a Rod System // Mechanics and Control Processes. - Ulyanovsk: 

UlGTU, 1996.- P. 13-29. 

25. Manzhosov V.K. Reflection and passage of a longitudinal strain wave at the boundary 

of conjugated rods // Bulletin of UlGTU. - 1999, No. 1 - P. 70-78. 

26. Manzhosov V.K., Novikova I.A. Reflection and transition of a longitudinal wave with 

linear deformation under decreasing intensity in the rod connection with an elastic 

element. // Bulletin of SSTU, 2012, 3 (67). 

27. Shatsky I.P., Perepichka V.V. Propagation of a shock wave in an elastic rod with 

viscoplastic external resistance. Applied Mechanics and Theoretical Physics, 2013, vol. 
54, No. 6. 

28. Mirzajanzade A.Kh. Problems of hydrodynamics of viscous-plastic fluids in oil 

production. -Baku: Aznefteizdat, 1959. 

 

E3S Web of Conferences 401, 02003 (2023)

CONMECHYDRO - 2023
https://doi.org/10.1051/e3sconf/202340102003

13


