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Abstract. In research work, it is pointed out the issue of a pulsating flow 

of a viscous incompressible fluid in a flat channel for a given harmonic 

fluctuation of the fluid flow rate. The study of the generation of pulsating 

current is used in biological mechanics, in particular, in the use of 

microchip systems. In addition, to ensure a constant flow of liquid, 

pneumatic micropumps that periodically squeeze liquid from empty 

volumes are widely used. In such systems, the installation of pulsating 

flow is shown to be economically beneficial. The transfer function of the 

amplitude-phase rate response is determined; with the help of these 

functions, the ratio of the tangential shear pressure on the channel fence to 

the average acceleration over the channel section is determined. In Figure 

1, it can be seen that the ratio of 0нK   in 
0

нс

кс




 is close to one and 2

0  is 

less than one. If 2

0   takes on values greater than unity, then the ratio of 

0нK   to 
0

нс

кс




 is greater than unity, and it has been shown to increase 

with increasing frequency of dimensionless oscillation. It was shown that 

in an unsteady flow of liquid, even in cases where liquid acceleration is 

equal to zero, it was studied that the stress on the wall of the channel 

exceeds its quasi-stationary value. 
0

нс

кс




 with the increase of the ratio 

нK , 

the increase of the parameter is explained by the fact that the change of the 

tensile stress on the wall advances in phases concerning the average speed 

along the section. Calculations determine that the non-stationary shear 

pressure on the channel fence increases non-monotonically with the 

acceleration of the liquid particle at low oscillation frequencies. The shear 

pressure reaches its maximum value, then decreases with increasing 

dimensionless oscillation rate, and asymptotically approaches the values 

without accelerated flow.  

1 Introduction 

The study of the pulsating flow of a viscous incompressible fluid in a flat channel for a 

given harmonic fluctuation of the flow rate can be applied in biological mechanics, 
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particularly for the operation of microchip systems [1-3]. These systems are designed to 

diagnose the functioning of various human organs and target drug delivery to them. In 

addition, to ensure a constant flow of liquid, pneumatic micro pumps are often used in 

biomedical arrangeations with a periodic displacement of liquid from free volumes [4, 5]. 

In such systems, arranging with a pulsating flow rate may be economically advantageous. 

As the authors know, at present, there is no information on the effect of flow rate pulsations 

on fluctuations in the coefficients of hydraulic resistance and friction resistance. 

However, these studies are essential for calculating the pressure gradient and other 

hydrodynamic characteristics that have special space in some biomedical and other 

technological studies [1-3]. Thus, studying the characteristics of the tangential shear 

pressure on the fence during an oscillatory flow of a viscous fluid and other flow 

parameters is of great importance. 

Pulsating flows of viscous fluids in rigid and elastic pipes were studied in the works of 

B.C.Gromeka [6]. In them, he determined the propagation velocities of the pressure pulse 

wave and their attenuation. Later, the oscillatory flow of a viscous fluid in a pipe was 

studied in the work of I.B.Crendal [7]. He, solving the issues of the oscillatory flow of a 

viscous fluid in an endless round pipe, derived formulas for determining the acceleration 

profile, fluid flow, and impedance during the propagation of a sinusoidal pressure wave. A 

few years later, P.Lambosii published his findings in [8], where he obtained the same 

acceleration profile, and he also calculated the viscosity resistance. 

J.R.Uomersley in [9] re-deduced P.Lambosia's solution. His distinctive qualitative 

results were that a phase shift between pressure fluctuations and fluctuations on average 

acceleration over the section was detected, and secondly, a non-monotonic distribution of 

acceleration profiles formed. 

For the first time, the influence of superimposed fluctuations of the average acceleration 

over the cross-section on the flow of a viscous fluid with a laminar flow in a pipe was 

published in an experimental work [10]. The so-called "annular effect" of Richardson was 

obtained at relatively high oscillation frequencies, which appear as a maximum on the 

profile of the oscillating component of the longitudinal acceleration in a narrow near-fence 

layer, the thickness of which decreases with increasing oscillation rate. In the rest of the 

pipe, the liquid oscillates as a whole following the fluctuation of the average acceleration 

over the section. In [11], experiments were also carried out on pipes with an internal 

diameter of 40 mm, in which the piston creates harmonic changes in the fluid flow rate near 

zero. This graph pointed out obtained from oscillograms, on which local velocities were 

recorded using an electrothermal anemometer at various points in the pipe section. It can be 

seen from the graphs that the local accelerations have the maximum values near the fence. 

These experimental results agree with the results of [10]. Unsteady pulsating flows of a 

viscous fluid in a round cylindrical pipe of infinite length under a harmonic changing 

pressure gradient were studied in [12, 13]. The calculation formulas were obtained for 

determining the distribution of acceleration and fluid flow by solving the issue. Numerical 

calculations have shown that in a pulsating flow at lower values of the dimensionless 

oscillation rate, the acceleration, flow rate, and other hydrodynamic parameters from the 

zero initial state are established slowly, relatively at high oscillation frequencies, and close 

to the parameters of the establishment of a non-pulsating flow. In an oscillating flow at high 

oscillation frequencies, these parameters are set almost instantly. Pulsating flows of a 

viscous incompressible fluid were studied in [14, 15] in a rectangular channel. The issue is 

solved by the finite difference method. The optimal parameters of the difference scheme are 

determined, and data are obtained on the amplitude and phase of oscillations of the 

longitudinal acceleration, the hydraulic resistance coefficient, and other flow parameters. At 

low oscillation frequencies, it is shown that all hydrodynamic parameters fluctuate 

according to the laws of the average acceleration over the cross-section. And at high values 
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of oscillation frequencies, the dependences of the hydrodynamic quantities on the 

dimensionless oscillation rate have the same change in character for various rectang1``ular 

channels. The influence of the aspect ratio of a rectangular channel on the hydrodynamics 

of a pulsating flow is also analyzed. 

In the process listed above, the field of fluid acceleration is mainly studied for various 

modes of change in the pressure gradient. The change in tangential and normal pressure 

arising during movement has been studied relatively little. In most cases, fluids were 

replaced by a sequence of flows with a quasi-stationary distribution of hydrodynamic 

quantities in hydrodynamic models of unsteady flows. However, the structure of unsteady 

flows differs from the structure of stationary flows, and in such cases, such a replacement 

should be justified in each specific case. The legitimacy of studying quasi-stationary 

characteristics for determining the field of shear pressure in a non-stationary flow of a 

viscous fluid is far from being resolved. 

In this paper, we study pulsating flows of a viscous fluid in a flat channel when 

harmonic oscillations of the fluid flow rate are superimposed on the flow. 

2 Method 

Consider the issue of solving a slow pulsating flow of a viscous incompressible fluid 

between two fixed parallel planes extending in both directions to limitless. Let us denote 

the distance between the fences as 2h . Axis OX runs horizontally in the middle of the 

channel along the flow. Axis OX  is directed perpendicular to the OY  axis. 

The fluid flow occurs symmetrically along the channel axis. Then the differential 

equation of motion of a viscous incompressible fluid has the following form [16-21]. 

 
2

2

u p u

t x y
 
  

  
  

    (1) 

 

where u  is longitudinal speed; p is pressure;  is density;  is dynamic viscosity; t is 

time. 

The oscillatory flow of a viscous fluid occurs due to a given harmonic fluctuation of the 

fluid flow rate or the averaged longitudinal acceleration over the channel section. 
 

Re i t

Q QQ a cos t a e   , Re i t

u uu a cos t a e     (2) 

 

where Qa  and 
ua  are the amplitudes of the liquid flow rate and the amplitudes of the 

averaged longitudinal acceleration over the channel section. 

In this case, the flow occurs symmetrically along the channel axis, and in this regard, 

the no-slip condition is satisfied in the channel fence, then the longitudinal acceleration on 

the channel fence is equal to zero. Then the boundary conditions will be: 

 

0u  at y h , 0
u

y





at 0y     (3) 

 

Due to the linearity, the equation (1) of the longitudinal acceleration, pressure, and shear 

pressure on the fence can be written as follows 

 

1( , ) Re ( ) i tu y t u y e  , 1( , ) Re ( ) i tp x t p x e  , 1( ) Re i tt e    (4) 
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Substituting these expressions into equation (1), we obtain 

 
2

1 1
12

( ) 1 ( )
( )

u y i p x
u y

y x

 

 

 
 

 
   (5) 

 

The solutions of equation (5), taking into account the boundary conditions (3), has the form 

 

 
 

3 2

0

1
1 3 2

0

cos
1 ( )

1
cos

y
i

p x h
u y

i x i



  

  
         

   
 
 

   (6) 

 

where 0
2
h


   is the Uomersley vibrational number (dimensionless vibration rate). Using 

the equation 

 

 1

1 y h

u y

y
  


 


    (7) 

 

sort out the tangential shear pressure on the fence 

 

 
 

3 2 3 2

0 0

1 2 3 2
0 0

sin1

cos

i iP
h

x i i

 


 

  
         

    (8) 

 

Now I will integrate both parts of the formula (6) concerning the variable y  in the 

range from h  to h ; we will find the formulas for the fluid flow 

 

 
   

3 2

01
1 3 2 3 2

0 0

sin1 ( )
2 1

cos

ip x
Q h

i x i i



   

             

  (9) 

 

Taking into account in formula (9) 
1 12 ,Q h u    we find the average longitudinal 

acceleration over the channel section 

 

 
   

3 2

01
1 3 2 3 2

0 0

sin1 ( )
1

cos

ip x
u

i x i i



   

  
        

   (10) 

 

Here i   can be written in the form 

 

2 2

02 2
i i h i

h h

  
  


      (11) 

 

Taking into account (11), formula (10) takes the form: 
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3 3 3

2 2 2
0 0 0

1 1 2
3 3

2 2
0 0

3 cos sin

3
sin

i i i
h

u

i i

  




 

   
   

      
   
   
   

   (12) 

 

Using the formula (12), we contemplate the transfer function  ,uW i   for the shear 

pressure on the fences, as 

 

 
 

 1 1

1

,

1

u

i
W i

u i


 



    (13) 

 

From equation (13), we get 

 

 
 

 1 1

2
3 3

2 2
0 0

1

, 3 3 3
1 2 2 2

0 0 0

sin

3
3( cos sin )

u

i i
ih

W i
u i

i i i



 
 


 

  

   
   
     

     
   

   

   (14) 

 

The transfer function (14) is sometimes called amplitude-phase rate response (AFCH). 

These functions make it possible to determine the dependence of the shear pressure on the 

channel fence on time for a given law of change in the average longitudinal acceleration 

over the channel section. 

3 Results and Discussion 

To determine the dependence of the shear pressure on the channel fence in a non-stationary 

flow of averages over the longitudinal acceleration section, we use the transfer function 

(14). In this regard, we consider the law of the change in the average longitudinal 

acceleration over the channel section 
11 cosuu a t  . Where 

1u
a is the amplitude of the 

averaged longitudinal acceleration over the channel section. Using the formulas for the 

averaged longitudinal acceleration over the channel section, it is possible to determine the 

dependence of the shear pressure on the fence between the averaged longitudinal 

acceleration over the channel section. 

In this case, the change in shear pressure on the fence is determined as follows. 

 

1 11 cos( )a t        (15) 

 

Where 
1
a is amplitude of shear pressure on the channel fence; 

1
 is phase shift between 

the value 
1 and 

1u  . Using the ratio 

 

1 1 1
cos( ) cos cos sin sint t t          . 

 

And considering that
1

1 sinu

u
a t

t
 

  
 


 we bring equation (15) to the form. 
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1 1

1 1

1 1

1
1 1

1
( cos ) ( sin )
u u

a a u
u

a a t

 

   


  
   


  (16) 

 

The values 1

1

1

( cos )
u

a

a



  and 1

1

1

sin
u

a

a



  are, respectively, the real and imaginary parts of 

the transfer function (14); therefore, from (14), we obtain 

 

1 1

3/ 2 2 3/ 2

0 0
, 3/ 2 3/ 2 3/ 2

0 0 0

1 ( ) sin( )
( )

3 cos( ) sin( )
u

i i
W i

i i i


 
 

  
   


  (17) 

 

Here 1

1

1

( cos )
u

a

a



  , 1

1

1

sin
u

a

a



  . 

Then (17) the formula takes the form 

 

1 1

1
,

1

1

3
u н

h
W K

u



 

 
  

 
   (18) 

 

Here, 1

1

н

u
K

u t

  

  

  and   are dimensionless quantities, t  is dimensional quantities, 

so it must be converted to a dimensionless form using the 
2

3

h
t t





  transformation. 

Taking this into account in (18), we obtain the calculation formula. 

 

2

0 0

3нс
н

кс

K
 


 

      (19) 

 

Here 0 1

3
кс u

h


    and

1 нс  . Using the formula (19), we plot the change in the 

relative shear pressure on the fence in an unsteady flow depending on the dimensionless 

oscillation rate. 

 

Fig. 1. Change in relative shear pressure in a non-stationary flow depending on the dimensionless 

oscillation rate at various values of fluid acceleration
нK . 
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The constructed graphs in Drawings-1 show that at 0нK   the ratio 
0

нс

кс




 is close to unity, 

while 2

0  is less than one. If 2

0  takes on greater values than unity, then even at 0нK  , the 

ratio 
0

нс

кс




 becomes greater than unity and increases with increasing dimensionless 

oscillation rate. 

This suggests that the shear pressure on the channel fence during unsteady fluid flow 

can exceed their quasi-stationary values even at those times when the fluid acceleration is 

zero. The ratio 
0

нс

кс




 increases with an increase in the 

нK  parameter, which explains the 

change in shear pressure on the fence, which occurs with a phase advance compared to the 

average speed over the cross-section. 

Therefore, the considered features in changes in the shear pressure on the fence for a 

given harmonic fluctuation of the flow rate are caused by violating the parabolic law of the 

distribution of local velocities over the channel section. 

Calculations show that in the near-surface layer, the velocities change in phase with the 

change in shear pressure on the fence along the channel, while in the central part of the 

flow, they remain in half phase, with the phase of shear pressure on the fence. 

4 Conclusions 

Issues of a pulsating flow of a viscous incompressible fluid in a flat channel are solved for a 

given harmonic oscillation of the fluid flow rate. The transfer function of the amplitude-

phase rate characteristics is determined with the help of these functions; the ratio of the 

tangential shear pressure on the channel fence to the average acceleration over the channel 

section is determined. Calculations show that the non-stationary shear pressure on the 

channel fence increases non-monotonically with the acceleration of the liquid particle at 

low oscillation frequencies. Reaching a maximum value, then decreasing with an increase 

in the dimensionless oscillation rate and asymptotically approaching the value without 

accelerated flow. 
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