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Abstract. When modeling the flow of groundwater and streams together, 

two different approaches are used, using hydraulic and hydrological 

models as channel flow models. The former is based on mathematical 

equations of water movement in open channels. In contrast, the latter is 

based on simplified empirical and semi-empirical relationships between the 

hydraulic characteristics of watercourses. In both cases, the watercourse is 

an internal boundary for the groundwater flow - otherwise, it is advisable 

to model it as a body of water. The groundwater model can be a scale 

model or an electrical model of the state of the groundwater or an aquifer. 

Groundwater models are used to represent the natural flow of groundwater 

in an environment. Some groundwater models include aspects of 

groundwater quality. Such groundwater models attempt to predict the fate 

and movement of a chemical in natural, urban, or hypothetical scenarios. 

Groundwater models can be used to predict the impact of hydrological 

changes on aquifer behavior and are often referred to as groundwater 

simulation models. Also, groundwater models are currently being used in 

various water management plans for urban areas. Because calculations in 

mathematical groundwater models are based on groundwater flow 

equations, which are differential equations that can often only be solved by 

approximate methods using numerical analysis, these models are also 

referred to as mathematical, numerical, or computational groundwater 

models.  

1 Introduction 

The unsaturated or vadose zone is the primary link between groundwater and hydrological 

inputs. Soil separates hydrological factors such as precipitation or snowmelt into surface 

runoff, soil moisture, evapotranspiration, and groundwater recharge. The flows through the 

unsaturated zone, which link surface water with soil moisture and groundwater, can be 

ascending or descending, depending on the hydraulic head gradient in the soil, and can be 

modeled using a numerical solution of the Richards partial differential equation or an 

ordinary differential. Equation Finite water content method validated for modeling 

interactions between groundwater and the vadose zone.  

Boundary conditions can be related to groundwater levels, artesian pressures, and 

hydraulic heads along model boundaries on the one hand (head conditions) or to 

groundwater inflows and outflows along model boundaries on the other. (flow conditions). 
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This may also include aspects of water quality, such as salinity. The initial conditions refer 

to the initial values of elements that can increase or decrease over time within the model 

domain, and they cover basically the same phenomenon as the boundary conditions. Initial 

and boundary conditions may vary from place to place. Boundary conditions may remain 

constant or change over time.  

The study of boundary value problems with the Poincaré – Tricomi condition for 

degenerate equations of elliptic and elliptic–hyperbolic types of the second kind, where the 

characteristics of the equation are also lines of degeneracy, is devoted[5–11]. In this paper, 

we prove the uniqueness of a solution to a boundary value problem of the Poincare – 

Tricomi problem type for an elliptic – hyperbolic equation of the second kind describing 

the groundwater differential model. 

2 Statement of the problem 

Consider the equation 

 

0)<<1(0= muuysgny yyxx

m
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in a domain 
21= DDD  , where 

1D  is a simply-connected domain in the plane  ,x y , 

bounded by a curve   at the first quadrant  0, 0x y  with its end points 

(1,0)(0,0), BA  and with the line segment 0)=( yAB  on the real axis Ox, and 
2

D  is a 

domain bounded by the segment AB  and characteristics of equation (1): 
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Let us introduce the following notations 

 

  , : 0 1, 0 , , 2 ,
2

m
J x y x y D AB

m
        

  

 
note that we have 

 

1
0.

2
    (2) 

 

3 Formulation of the problem 

In the domain D , we consider the following Problem Poincar'e - Tricomi for the equation 

(1). 

Problem. To find a function ),( yxu , the following properties: 

1)    1( , )u x y C D C D J     – and 
x

u , 
y

u  can tend to infinity of the order 

less than 2  at points  0,0A  and  1,0B ; 
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2) A function  2

1( , )u x y C D  is a regular solution of equation (1) in the domain 

 1 0D y  , and is the generalized solution from the class 
2R  [7,8] in the domain 

 2 0D y  ; 

3) The function ),( yxu  satisfies the following condition: 

 

( , 0) ( , 0)y yu x u x   
 

 

4) ( , )u x y satisfies the following boundary conditions 

 

 ( ) [ ] ( ) = ( ), 0 ,
s

s A u s u s s l


      (3) 

 

2

1
0),(=),(  xxyxu

AC
   (4) 

 

where ( )s , ( )s , )(s , ( )x  are given sufficiently smooth functions, and 

1 21 1
( ) 0, 0;

2 2
x C C

   
    

   
, and the consistency condition is fulfilled 

( ) (0) 0,l    where 

 

  ,m

s

dy u dx u
A u y

ds x ds y

 
 

   
 

= cos( , ), = cos( , )
dx dy

n y n x
ds ds


, where n  is the external normal to the curve  , l  is 

the length of the curve  , s  is the length of an arc of the curve  , starting from the 

point  1,0B . 

We assume that the curve   satisfies the following conditions: 

1) functions ( ), ( )x s y s , which describe the parametrical equation of a curve  , have 

continuous derivatives ( ), ( )x s y s  , and don't tend to zero at the same time, moreover  

have the second derivatives meeting Hölder's condition[9]  0 1    of an order in an 

interval 0 s l  ; 

2) in the vicinity end points of the curve   satisfies inequalities: 

 

1( ),mdx
C y s

ds

   (5) 

 

and  ( ) (0) 0, (0) 1, ( ) 0.x l y x y l     where C is a constant.   

The following theorem holds true. 

Theorem. If conditions (2) and  
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( ) ( ) 0, 0s s s l      (6) 

22

0
lim( ) (1, ) = 0

m

y
y u y


  (7) 

 

are fulfilled, then the solution of the Problem PT in the domain D is unique. 

Proof. We prove the theorem using a method of energy integrals. Let  ,u x y  be a twice 

continuously differentiable solution of (1) in the domain 1 2, ,D D    

1 2 1 2 1 2, , ,

1 2D D D        where 1 2,

1D    is the domain with border 

 1 2 1 1 1 1

2 2 1 2 2

,

1 2:D A B A B y     

          strictly lying in the region 
1,D  and  1 2,

2D     is 

the domain bounded by lines 
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where 
1 2, 

 
 are sufficiently small positive real numbers. 

It is easy to see that in the domain 0)<(
2

yD  the equation (1) has the form: 

 

( ) = 0.m

xx yyy u u 
 

 

The following identity holds[10]: 

 

2 2( ) = ( ) ( ) .m m m

xx yy x y x yu y u u y uu uu y u u
x y

 
                  

 

Integrating the latter over the domain 1 2,

2D 
, we obtain, 

 

, ,1 2 1 2
2 2

0 = ( ) = ( )m m

xx yy x y

D D

u y u u dxdy y uu uu dxdy
x y   

  
                

 
 

,1 2
2

2 2( )m

y x

D

u y u dxdy
 

    
                                              (8) 

 

Applying the Green's formula (see [12]) to the first integral of the right-hand side of (8), 

we obtain 

 

,1 2 1 1 1 11
2 2 2 2 2

0 = ( ) = ( )m m

xx yy x y

D A C CB B A

u y u u dxdy u y u dy u dx
     

   
 

           
 

,1 2
2

2 2( )m

y x

D

u y u dxdy
 

    
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Calculating the first integral of the right-hand side of the last equality, taking into 

account the condition on the characteristic AC, we have: 

 

1 1 1 11
2 2 2 2

( ) =m
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Furthermore, passing to the limit at 
1 0   and 

2 0   considering 

( , 0) ( , 0)y yu x u x    , we obtain 
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1
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On the characteristic BC  we have dyydx
m

2)(=  . Then 

 

    udyydyudxuuydxudyuyu
mB

C

yx

mB

C

yx

m
B

C

22 )(=)(=)(                     (9) 

 

Integrating the last integral by parts, taking into account the conditions 0=
AC

u  and 

(7), we get: 

 
2

22 2( ) = ( ) .
4

B Bm m

C C

m
y udu y u dy



  
 

 

By virtue of the condition 0<<1 m  in (9), we have 

 

  0)(
4

=)(=)( 22

2

2 


 duuy
m

uduydxudyuyu
mB

C
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C

yx

m
B

C

.        (10) 

 

Now we show that the first integral of the right-hand side of (8) is not positive. For this, we 

pass to the characteristic variables ),(  : 
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and we get 

 

 
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2
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4

m
m

m
m

y x

D

m
u y u dxdy u u d d    


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,             (11) 

 

where   1 , : 0 1, 1           is the image of the domain 
2

D   in the coordinates 

 ,  . 

In the domain 
1  , equation (1) for 0y   takes the form 

 

0=)(





uuu 


 . 

 

By multiplying both sides of the last equation by 
u , we have  
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Substituting (12) into (11) 
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and integrating by parts the last integral, we obtain 
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As the last term on the right-hand side at  =  vanishes, we have: 
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Note that 0<<1 m  and 

1

22( ) 0
m

m u d d   



 
, hence we obtain: 

 

  0)( 22

2

 dxdyuyu
x

m

y

D

  (13) 

 

Considering (10) and (13) by (8), we get 

 

0)()(
1

0

 dxxx   (14) 

 

In the domain 
1D , equation (1) for 0y   has the form  

 

0=
yyxx

m uuy 
 

 

The following identity is valid 
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
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Integrating it over the domain 1 2,

1 1D D   , we have 

 

, ,1 2 1 2
1 1

0 = =m m

xx yy x y

D D

u y u u dxdy y uu uu dxdy
x y   

  
              

 
 

,1 2
1

2 2m

x y

D

y u u dxdy
 

   
 

 

Applying the Green's formula (see [11,12]) to the first integral of the right-hand side of the 

last equality, we obtain 

 

, , ,1 2 1 2 1 2
1 1 1

2 20 = =m m m

xx yy x y x y

D D D

u y u u dxdy y u u dxdy u y u dy u dx
     



                
 

 

By virtue of the condition : = 0 = 0AB y dy  and = cos( , )dx n y ds , we get 

 
2

,1 2 1 11

2 2

2 20 ( , ) ( , ) [ ] ,
x

y
xD

x y
m

s
y u u dxdy u x u x dx u A u ds

 


         
      (15) 

 

where 
1 2,x x  are abscissas of points of intersection of the line 

2y   with a curve 
1
.  

Taking into account conditions 1) of the Problem PT and  ( ) ( ) 0s b x   , taking (3) 

into account from (15) for ( ) 0s    and  
1 20, 0   , we obtain 
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1

1

2
0

2 2 2( ) ( )
( ) ( ) 0.

( )D
x y

m s s
y u u dxdy x x dx u ds

s

 
 


       

        (16) 

 

By virtue of (6) and (14), it follows from (16) that 0x yu u   in 
1D , that is 

u const  in 
1( , )x y D , also from the result to the inversion of each term (16) to zero, 

we also have 0u   in  . 

Considering the Hopf's principle, we conclude that 0u    in 
1D  for ( ) 0s  . The 

uniqueness of a solution to the Cauchy problem implies that 0u   and in 
2D . Since  

1 2D D D    then 0u   in D . This proves the uniqueness of the solution of Problem 

PT. 

The theorem is proved. 2 

Remark. In [5] the uniqueness of the solution of the Problem PT for 

 ( ) 0, 0,s s l     is proved by the maximum principle. 

The existence of a solution of the Problem PT for ( ) 0s   is proved with the help of 

the method of integral equations[8]. 

The applicability of the groundwater model to the real situation depends on the accuracy 

of the input data and parameters. Their determination requires significant research, such as 

collecting hydrological data (precipitation, evapotranspiration, irrigation, drainage) and 

determining the parameters mentioned earlier, including pumping. Since many parameters 

are highly variable in space, expert judgment is required to obtain representative values. 

4 Conclusions 

Models can also be used for if-then analysis: if the parameter value is A, then what is the 

outcome, and if the parameter value is B instead, what impact? This analysis may be 

sufficient to provide a rough idea of groundwater behavior. Still, it can also serve as a 

sensitivity analysis to answer the question of which factors have a large influence and 

which have a lesser effect. This information makes it possible to direct investigative efforts 

toward influential factors. When enough data has been collected, the missing information 

can be determined using calibration. This means that one assumes a range of values for an 

unknown or questionable value for a certain parameter and runs the model repeatedly, 

comparing the results with known corresponding data. For example, suppose groundwater 

salinity values are available, and the hydraulic conductivity value is uncertain. In that case, 

a range of conductivity is assumed, and this conductivity value is chosen as "true", which 

gives salinity results close to the observed values, which means that the groundwater flow, 

determined by the hydraulic conductivity, follows salinity conditions. This procedure is 

similar to flow measurement in a river or canal, allowing very salty water of known salt 

concentration to drip into the canal and measuring the resulting salt concentration 

downstream. 
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