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Abstract. For a liquid with a nonmonotonic flow curve in the stationary 

case in the region of the descending branch, setting the velocity at the 

boundary does not uniquely determine the shear stress, strain rate 

distribution, and velocity profile that arise since the problem is known to 

have many unstable solutions. At the same time, the problem of the motion 

of such fluid under the action of a given pressure difference has no more 

than three solutions, two of which are stable, and the third is unstable and 

not reproducible. Which of the two stable solutions is realized depends on 

the loading history. The problem of determining the velocity profile for a 

fluid characterized by a nonmonotonic rheological flow curve between 

parallel planes is considered. The existence of a solution is realized by 

reducing the problem posed to a singular integral equation of normal type, 

which is known by the Carleman – Vekua regularization method developed 

by S.G. Mikhlin and M.M. Smirnov equivalently reduces to the Fredholm 

integral equation of the second kind, and the solvability of the latter 

follows from the uniqueness of the solution delivered problem describing 

of criteria for integro–differential modeling of a plane-parallel flow of a 

viscous incompressible fluid. 

1 Introduction 

Boundary value problems for degenerate equations of elliptic and equations of mixed types 

are at the center of the attention of mathematicians and mechanics due to numerous 

applications in the study of problems in mechanics, physics, engineering, and biology. 

Starting from [1, 2], a new direction has appeared in the theory of equations of elliptic 

and mixed types, in which nonlocal boundary value problems (problems with a shift) and 

Bitsadze-Samarskii problems are considered. Further, it turned out that nonlocal boundary 

conditions arise in problems of predicting soil moisture [3], in modeling fluid filtration in 

porous media [4], in mathematical modeling of laser radiation processes, and in problems 

of plasma physics [5], as well as in mathematical biology [6-15]. 

Solving various boundary value problems with the Poincaré conditions or with a 

conormal derivative for the Tricomi, Lavrentiev-Bitsadze, and more general equations 
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devoted to many articles[16 - 30]. We note that the results of all the listed papers were 

obtained for equations of the first kind, and equations of the second kind, nonlocal 

boundary value problems with the Poincaré condition have not been previously studied [31-

35]. 

Therefore, the study of nonlocal boundary value problems with a conormal derivative 

for equations of mixed elliptic-hyperbolic type of the second kind seems to be very relevant 

and little studied. Note the works [36-40]. 

In this paper, we study a nonlocal boundary value problem with the Poincaré condition 

for an elliptic-hyperbolic type equation of the second kind, i.e., for an equation where the 

line of degeneracy is a characteristic describing criteria for integro-differential modeling of 

a plane-parallel flow of a viscous incompressible fluid. 

2 Statement of the problem 

Consider the equation 

= 0,
m

yyxx
sgny y u u   0;1m   (1) 

Let   is a finite simply connected region of the plane of independent variables x, y, 

bounded at 0>y
 
crooked   dot ends (1,0)(0,0), BA

 
and segment 0)=(yAB , and when

0y  characteristics 

2 2
2 22 2

: ( ) = 0, : ( ) =1
2 2

m m

AC x y BC x y
m m

 

   
 

 

equations (1). 

Let further  1
0 ,y     2 0 ,y    

  ( , ) : 0 1, 0 ,J x y x y     
1 2

,J   2 ( 2),m m   and 

 0,5;0 .  
 

(2) 

Problem C . Required to find function ),( yxu , which has the following properties: 

1)    1

1 2
( , )u x y C C J       , and the derivatives 

x
u  and 

y
u can 

address infinity of order less than one at points  0,0A
 

and  1,0B ; 2) 

 2

1( , )u x y C 
 
is a regular solution of equation (1) in the domain 

1 , and in the region 

2
 
is a generalized solution from the class 

2
R

 
[16]; 3) the gluing condition is satisfied on 

the degeneracy line 

0 0
lim ( , ) = lim ( , )

y yy y
u x y u x y

 
   (3) 

4) satisfies the following boundary conditions 

 ( ) [ ] ( ) = ( ), 0 ,
s

s A u s u s s l


       (4) 

0 1
( ) ( ) = ( ), ( ,0) ,

d d
u x b u x c x x J

dx dx
        

  (5) 
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where l   is the length of the whole curve  , s   is length  , counted from the point 

(1,0)B , a ( )s , ( )s , )(s , ( )c x are given functions, and  0,b const   

( ) ( ) 0, 0 ,s s s l      (6) 

1 2( ), ( ), ( ) [0, ], ( ) [0,1] (0,1),s s s C l c x C C       (7) 

here 

2 ( 2)

0

2
,

2 4

m
x m

x

  
           

and    

2

2

1

1 2
; 1

2 4

mх m
x


 

        
 

  (8)
 

- points of intersection of the characteristics of equation (1), emerging from the points

x J , with characteristics AC  and BC  respectively, and [ ]sA u  
determined from the 

formula   m

s

dy u dx u
A u y

as x as y

 
 

 
. 

Note that if ( ) 0, 0s b   , then the tasks C  match the tasks T  studied in [17]. 

Therefore, in what follows, we will assume that 0)( s . 

3 Uniqueness of solutions to the problem C  

To prove the uniqueness of the solution to the problem C . The following lemmas play an 

important role. 

Lemma 1. If the function  x  satisfies Hölder's condition with exponent 2k   
at 

0 1x  , then the function 

   1 2
0

1

(1 2 ) xT x D x



 

    (9) 

can be represented as 

     
2

0

2
.

2

x
sin d

T x x t t dt
dx





 

 

Lemma 2. Let the conditions 

     
1,

0,1 0,1
k

x C C     , 2k                     (10) 

and function  x
 
at the point   0 0 0,1x x x 

 
takes on the largest positive value 

(LPV) and the smallest negative value (SNV). Then the function 

1 2

0

( )1 ( )
( )

t T t
E x dt

x t




  

at the point 0x x
 
can be represented as 

       
2 12 1 2 12

0 0 0 0 0(1 ) 2 1 (1) 1E x x x cos x x x
    
    

  
      
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 

   

 
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0
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1
0 0

0 0 0

1 2 2

x

x

x t t x
cos d t d t

x t t x
 

   
 

 

 
 

  

 
  

 
 

  (11) 

Lemma 3. Let conditions (2) and (10) be satisfied, and the function  x
 
at the point 

  0 0 0,1x x x 
 
accepts refineries (SNV). Then the function ( )T x (see (9)) at the 

point 0x x
 
can be represented as 

 
 

 
0

1 2
0 0

1

1 2 x x x
T x D x





 
 

 

   
   

 

0

2 1

2 2

0
0 0

0 0

2
1 2

x
x tSin

x x d t
x t





 
 






 
 
 
 


  


 , 

and 

    0 0 0,0 0T x T x x J   .  (12) 

Proof of Lemma 1-3 is carried out in the same way as in [22]. 

Lemma 1-3 implies the following. 

Theorem 1. (An analog of the extremum principle of A.V. Bitsadze). If conditions (2) are 

satisfied and 0b  , then the solution  ,u x y
 

problem C  at   0c x 
 

and  

(1) 0 
 
own refinery and SNV in a closed area 1  only reaches  . 

Proof of Theorem 1. Indeed, due to the extremum principle for elliptic equations [5], [23], 

the solution ( , )u x y  equations (1) inside the region 
1

 
cannot reach its refinery and 

SNV. Let us show that the solution ( , )u x y  equation (1) does not reach its OR and SNV 

on the segment J . Assume the opposite; let ( , )u x y
 
some point 

0
( ,0)x

 
segment J  

reaches its refinery (SNV). Based on Lemma 2, if the function  x
 
at the point 

0
( ,0)x

 

accepts the refinery (SNV), then ( )A x
 
at the point 0x x

 
can be represented in the 

form (11), and 

    0 0 0,0 0 ( ,0)E x E x x J   .                   (13) 

Now let's define the sign ( )x 

 
at the point 

0
( ,0)x J . Due to (12) and (13) at 

( ) 0c x 
 
we get 

0 0 0
( ) 0 ( ( ) 0), ( ,0)x x x J     .                     (14) 

But on the other hand, by virtue of the Zaremba-Giraud principle [24], [26], for the solution 

of equation (1), taking into account (15), we have 
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0 0 0
( ) 0 ( ( ) 0), ( ,0)x x x J     .                     (15) 

Taking into account (4) from (14), we find 

0 0 0
( ) 0 ( ( ) 0), ( ,0)x x x J     . 

This inequality contradicts inequality (15). 

In this way, ( , )u x y  does not reach its refinery (SNV) in the open section J . 

Theorem 1 is proved. 

Theorem 2. If the conditions of Theorem 1 are satisfied, and the functions ( )s and ( )s

near points (1,0)(0,0), BA
 
satisfy conditions (7) and 

(0) 0, ( ) 0l   ,                    (16) 

  0
 

0

2 2 2
2( )  , 1 0, 0,

m m
ms const s l s m const


 

 


           
(17) 

then in the area D , there cannot be more than one solution to the problem C . 

Proof of Theorem 2. Let ( ) ( ) 0s c x   , then, by virtue of Theorem 1; it suffices to 

show that the solution to the problem C  cannot reach its positive maximum and negative 

minimum on  . 

Assume that a positive maximum (negative minimum) is reached at some point 0s , 

different from the points (0,0)A and (1,0)B . Then at this point, due to the Zaremba-

Giraud principle [24], [27]
0
 [ ] 0sA u   

0
 [ ] 0sA u  , and the boundary condition 

(5) takes the form 

0

0 0

2

0

( ) ( )
[ ]

( )
s

s s
A u u

s

 


  . 

But this is impossible due to condition (7). 

Therefore, at interior points function ),( yxu does not reach its positive maximum 

(negative minimum). 

At points (0,0)A and (1,0)B , taking into account (2), (3), (17), we have respectively. 

0
lim ( ) [ ] 0s
S

s A u



    

and     lim ( ) [ ] 0s
S l

s A u



       

(18) 

If a positive maximum (negative minimum) is reached at the point (0,0)A
 
or (1,0)B , 

then by virtue of (18), the boundary condition (5) takes the form 

 
(0) (0,0) 0u 

  
or  ( ) (1,0) 0l u  . 

Hence, taking into account (16), we obtain 
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( ) (0,0) (0) 0,    ( ) (1,0) (1) 0.u A u u B u      
     

(19) 

Means, ),( yxu does not reach a positive maximum (negative minimum) at points

(0,0)A
 
and (1,0)B . In this way, ),( yxu

 
does not reach a positive maximum 

(negative minimum) on the curve  . 

Based on the extremum principle (see Theorem 1), we conclude that constyxu ),(
 

in  1 . Therefore, taking into account (19), we have 0),( yxu
 
in 1 . Due to the 

uniqueness of the solution of the Cauchy problem in the domains
2 ( 1,3)j j  for 

equation (1), we obtain that 0),( yxu  in 2 ( 1,3)j j  . Hence it follows that 

0),( yxu  in  . This proves the uniqueness of the solution to the problemC . 

Theorem 2. is proved. 

4 Existence of a solution to the problem C   

When studying the problemC , an important role is played by the functional relationships 

between  x 

 
and  x from the elliptic and hyperbolic parts of the domain  , 

where 

     ,0 , ,0 ,u x x x J 
                             

(20) 

 
 

 
 

   
0 0

, ,
lim , lim , ,0 .
y y

u x y u x y
x x x J

y y
  

 

 
  

 
       

(21) 

A generalized solution of the Cauchy problem with data (20), (21) for equation (1) from 

the class
2R in the area of 

2 is given by the formula [16. 230 (27.5)], [3]: 

             
0

,,u t t T t dt t t N t dt
 

  



     
  

      
  

(22) 

where 

2
22

( )
2

m

x y
m




  


,

2
22

( ) ,
2

m

x y
m




  


 
2 1

2 2

(2 2 )
2(1 2 ) ,

(1 )

 
 



  
 

 
 

     22cos ,N t T t t    
    

(23) 

     
2

0

,
x

x x t T t dt





 
    

(24) 

functions  T x
 
and  x 

 
continuous in  0,1

 
and integrable on 0,1   , a  x

 
vanishes 

on the order of at least 2
 
at 0x . 
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Putting 0  , x 
 
and x  , 1   

respectively, in (22), taking into account (8), after 

some transformations, we obtain 

     0
0

,

x

u x x t t N t dt
   

   
                      

(25) 

             1

1

0

.1 1
x

x

xu x t t T t d t t x t N t d t
  

         
        

(26) 

We put (25) and (26) in the boundary condition (6) by virtue of the fractional integration 

operators, and (23) we obtain a functional relation between  T x
 
and  x  ,  transferred 

from the area 
2  

on the J : 

    
2 2 2

22 2

1

cos2 (1 )
2 cos 1 1 ( ) ( )

2cos

x b x
x b x x b x x T x

 
   

 



 

     
        

 
 

 
 

 
12 2

0 1

0

1sin (1 ) ( )
.

1 1
x x

b xb t T t x
dt D c x D c x

x t

 
 

  

 
 

   
    

   

(27)

 The solution of the problem DK  with conditions (5) and (20) for equation (1) in the region 

1D  
exists, is unique, and can be represented in the form [16. see (10.78)]: 

2 2

1

0 0

( )
( , ) ( ) ( ,0; , ) ( , ; , )

( )

l
s

u x y G x y d G x y ds
s


     

 


 

 
       (28) 

where 
2( , ; , )G x y    is Green's function of the problem DK  for equation (1) [16]: 

Differentiating concerning y equation (28), then directing y to zero, we get the functional 

relation between ( )x
 
and ( )x 

, transferred from the area 
1  

on the J : 

 

1

2 1 2 12
2 2 2

0 0

1
( )

( ) ( ) ( ) ( ) ( )
1 2 2

x

x

k d t dt
x x t t dt t x t dt k

dx t x tx

 




  



 






      
   

    

1 2

2 2

0 0

( ,0; ,0) ( ( ), ( ); ,0)
( ) ( ) ,

l
H t x q s s x

t dt s ds
y y

 
 



 
 

   
    

(29) 

where ( )s  is  a solution to the integral equation 

  2

0

( ) 2 ( ), ( ); ( ), ( )( ) s

l

s A q t t x s y st    
  

 

 2 .
( ) 2 ( )

( ), ( ); ( ), ( )
( ) ( )

s s
q t t x s y s dt

s s

 
 

 





 
 

and  2 , , ,q x y  is the fundamental solution of equation (1), and it has the form: 

       
4 2

1 22

2 2 1

4
, , , 1 1 ,1 , 2 2 ;1

2
q x y k r w F w

m


 

    


  

      
 
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where 

 
 

22 2 2
2

2 2
22

1

4

2

m mr
x y

r m
 

   
    

  

, 

2

2

1

1
, , 0,

2( 2) 2

r m
w

r m
     



  
 

2 2 2

2

11 4

4 2 2 2
k

m




 


  

  
   

, 

 , , ;F a b c z
 
 is hypergeometric function of Gauss [23]. 

Substituting (24) into (29) and taking into account some identities of fractional differential 

operators, we obtain a functional relation between ( )T x
 
and ( )x  , transferred from the 

area 
1  

on the J : 

21

2 2

0

1 1 1 2
( ) ( ) ( )

1 2 1 2 1 2

k tg k t t
x T x T t dt

x t x x t xt



 


 



     
               


 

 
21 1 12

2 2

0 0

2 ( ,0; ,0) 2 1 ( )
( )

1 2 1 1 2
t

H z x k t T t dt
T t dt z t dz

y x x




 


   

    
     

  
 

2

0

( ( ), ( ); ,0)
( ) , ( ,0)

l
q s s x

s ds x J
y

 



 


.  (30) 

Theorem 3. If conditions (2), (3), and (7) are satisfied, then in the region  , the solution 

of the problemC  exists. 

Proof of Theorem 3. Excluding ( )x 

 
from relations (27) and (30), taking into account (4) 

and (24), we obtain a singular integral equation of the form: 

2
1

2
1

0

1

0

( ) 1 1 1 2
( ) ( ) ( ) ( , ) ( )

1 2

P x t t
P x T x T t dt K x t T t dt

i x t x x t xt






    

            


 

 

( ), 0 1,F x x  
       

(31) 

where 

2
1 1 2

1
( ) ( ) ( )

1 2 2cos

k tg
P x d x d x

 

 
 



, 2 22
2 1( ) ( ) sin (1 )

1 2

ik
P x d x ib x 




  


, 

 
22 2 2

2 2 2 1
1

1 ( ,0; ,0) sin (1 2 )(1 ) 2 ( ) 1
( , ) ( )

2 (1 2 )(1 2 ) 1t

H z x b t t k d x t
K x t d x z t dz

y x t xt x x


 

  


     

     
       

 

 
 

 
 

 2
1 0 1

0

1( , ; ,0)
( ) ( ) ( )

1 1

l

x x

b xq t x x
F x d x s ds D c x D c x

y


 


 


 

  
    

, 

equation (31) is an equation of normal type [23, 24]. 

Applying the well-known Carleman-Vekua regularization method [23], we obtain the 

Fredholm integral equation of the second kind, the solvability of which follows from the 

uniqueness of the solution of the problem C . 

Theorem 3 is proved.  
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5 Conclusions 

Thus, with the help developed by the article's authors, a new principle extremum for an 

equation of the second kind proves the uniqueness of the stated problem. When studying 

the existence of a solution to the problem under study, with the help of functional relations, 

a singular integral equation was obtained of the normal type, the solvability of which 

follows from the uniqueness of the solution of the problem describing criteria for integro-

differential modeling of a plane-parallel flow of a viscous incompressible fluid. The article 

presents new mathematical results that are interesting for a specialist in this field, which can 

be used to compile some gas and hydrodynamic processes models, predict soil moisture, 

and model fluid filtration in porous media.  
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