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Abstract. Usually, planar and spatial problems of the theory of elasticity 
in stresses are solved using the Airy or Maxwell stress function, 
respectively. Solving a plane problem usually comes down to solving a 
biharmonic equation. In the spatial case, it can be solved by the Castigliano 
variational method. This work is devoted to the mathematical and 

numerical solution of the spatial problem of elasticity theory directly 
concerning stresses. In this case, the boundary value problem consists of 
three equilibrium equations and three Beltrami-Michell equations with the 
corresponding boundary conditions. At the same time, equilibrium 
equations are considered as missing boundary conditions. Symmetric 
finite-difference equations are constructed, and the problems of 
equilibrium of a parallelepiped under the action of domed and uniformly 
distributed loads are solved numerically. The reliability of the results 

obtained is substantiated by comparing the numerical results with the well-
known Filonenko-Borodich solution and with the results of solving the 
boundary value problem of the equilibrium of the parallelepiped with 
respect to displacements. 

1 Introduction 

The formulation of the boundary value problem of the theory of elasticity concerning 

stresses is an actual problem in solid mechanics. It is known that boundary value problems 

in stresses are based on the Saint-Venant conditions on the continuity of deformations and 

can be written in the form of Beltrami-Michell equations [1]. Then the boundary value 

problem in stresses consists of six Beltrami-Michell differential equations, three 

equilibrium equations, and three boundary conditions. In this case, the problem of 
insufficiency of boundary conditions is solved by considering the equilibrium equation on 

the boundary of a given domain [2]. In the three-dimensional case, the boundary value 

problem in stresses was first solved by Filonenko-Borodich [3] by a variational method 

based on the expansion of the stress tensor in a series concerning trigonometric functions 

and continued by others [5, 6]. Two-dimensional stress problems are usually solved by 

introducing the Airy's stress function satisfying the equilibrium equation, and reduced to 

solving a biharmonic equation [7, 8]. In [9, 10], Maxwell-type stress functions were used to 

solve the spatial elasticity problems in stresses, similar to the two-dimensional case. 
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In the works of Pobedri [11-13], a new formulation of the boundary value problem in 

stresses is proposed, where the equilibrium equations are considered boundary conditions. 

In a particular case, the classical Beltrami-Michell equations follow from the new setting. 

The work [14] also studies the new Pobedri boundary value problem in stresses. The issues 

of the existence and uniqueness of the solution of boundary value problems in stresses and 

the equivalence of new and classical formulations are considered in the following work 

[15]. Dynamic boundary value problems concerning stresses are considered in the works of 

Konovalov [16]. 

This work is devoted to formulating and numerical solution of the spatial problem of 

elasticity theory directly concerning stresses. The problem of the equilibrium of a 

parallelepiped under the action of domed and uniformly distributed loads is considered. 
Discrete equations are constructed by the finite difference method and solved by the 

iterative method. 

2 Formulation of the boundary value problem of the theory of 

elasticity in stresses 

It is known that the boundary value problem of the theory of elasticity in stresses consists 
of the equilibrium equation, the Beltrami-Michell equation with the corresponding 

boundary conditions [1,2], i.e. 
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where 
ij

   is stress tensor, ,      are elastic Lame constants,    is spherical part of 

strain tensor, 
i

X   is body forces, 
i

S   is surface load,   is surface , V   is volume, 

ij
   is Kronecker symbol, in   is components of the outer normal to the surface ,  

/ ( ) / 2v       is Poisson's ratio, 
2   is Laplace operator. 

In the absence of body forces, the boundary value problem (1-3) has the form [11]: 
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The equations (4-6) system consists of six Beltrami-Michell equations and three 

equilibrium equations with appropriate boundary conditions. It can be seen from this 
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system that the number of differential equations is nine, the number of boundary conditions 

is three, and the boundary value problem is not closed. 

According to the studies of Pobedri [2, 11, 14], considering the equilibrium equation on 

the boundary of a given area as a boundary condition, i.e. 

 

0
,ij j




     (7) 

 

Combined with equations (4-6), this represents the classical boundary value problem of the 

theory of elasticity in stresses. 

Note that consideration of the equilibrium equation on the boundary of the region V 
under consideration allows us to formulate the boundary value problem of the theory in a 

closed form concerning stresses. Multiplying the Beltrami-Michell equations by 
ij
 , one 

can show the validity of the following harmonic equation 

 

2 ( ) 0x y z         (8) 

 

It is known that in the case of a plane problem, the strain compatibility equation, using 
Hooke's law and the equilibrium equation, can be reduced to the form 

 

2 ( ) 0,x y       (9) 

 
which also follows from (7) in the case of plane deformation. 

3 Boundary value problem in stresses for a parallelepiped 

In [19, 20], it is shown that in the case of a plane problem, the boundary value problem in 

stresses can be composed of the third Beltrami-Michell equation and two equilibrium 

equations. Similarly to the plane problem of the theory of elasticity, the spatial problem in 

stresses can be formulated as a system of partial differential equations consisting of three 

equilibrium equations and three Beltrami-Michell equations 
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with  appropriate  boundary  conditions 
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As the missing boundary conditions, according to the works of Pobedri [2], we consider the 

equilibrium equations on the boundary of a given area, i.e. 
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Thus, equation (10-17) is a spatial boundary value problem of the theory of elasticity in 
stresses. 

Consider the well-known boundary value problem (10-17) on the equilibrium of a 

parallelepiped of size (2a,2b,2c) with the origin of the coordinate system at the center of the 

parallelepiped [3]. Let the parallelepiped be in equilibrium under the action of the load S 

applied on opposite faces perpendicular to the OZ axis; the remaining faces are free from 

loads. Let the parallelepiped be under the action of compressive forces from both sides 

along the OX axis; the other sides are free from loads (Fig. 1) i.e. 

 

,

0, 0

z z c

xz z c yz z c

S

 



 



 
   (18) 

According to the boundary conditions (16), the corresponding normal and shear stresses are 

set on the remaining faces. For example, 

for x=a: 

0, 0, 0x xy xz        (19) 

Three additional conditions are required on each face of the parallelepiped. They can be 

found in additional conditions (17). 
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Fig. 1. Parallelepiped with  faces and shear stresses 

 

For example, on the face x=a, the condition for y  can be obtained from (17)2, which, 

taking into account (19), has the form 

 

y yz

x a x a
y z

 
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     (20) 

 

Similarly, from (17)3, one can find the condition for z  i.e. 

 

yzz
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The condition for yz  is chosen from the following: 

 

yz x a yz x a h          (22) 

 

Since the problem under consideration is solved by the finite difference method, at small 

grid steps the value of yz x a   can be approximately equal to the value of 
1yz x a h    from 

the previous neighboring layer. Similarly, boundary and additional boundary conditions can 

be defined for the remaining faces. 

Thus, it is easy to see from relations (18-22) that there are six boundary conditions on 
each face of the parallelepiped. 

4 Finite-difference equations for the spatial problem of the 

theory of elasticity in stresses 

Let the boundary value problem (10-17) be considered in a parallelepiped with edge lengths 
l1 = 2a, l2  = 2b, and l3 = 2c (Fig. 1). By dividing the lengths of the sides of the 

parallelepiped by Nr, one can find the grid step / , 1,3
r r r

h l N r   along the coordinate 

axes. Then the coordinates of the nodal points have the form 
1 1
 ( 0, )

i
x ih i n   
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2 2
,  ( 0, )

j
y jh j n  , 

3 3
 z (k 0, )

k
kh n   [6, 3]. By replacing the derivatives in equations 

(10-15) with the corresponding finite-difference relations, we can find that 
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Replacing the first term in equation (23) with a left finite relation, one can find that 
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From relations (23) and (29), we can find that 

 

1, , 1, ,2 x x x

ijk i j k i j k        (30) 

 

Similarly, from equation (4.2), we find 
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By resolving the finite difference equations (26-28) and (30-32), concerning x
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    



 (t) (t) (t) (t) (t) (t) (t)
, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

2 2 2

2 3 2 3 1 2 3

2 2 2
}} /{ }

4 4

y y z z z z
k i j k i j k i j k i j k i j k i j k

h h h h h h h

                
    

  

 (38) 

 

where indices change at interior points i.e., 
1 2 31 1, 1 1, 1 1i n j n k n         , t is 

iteration number. 

In this case, according to (18), the boundary conditions have the form: 

for  :  x a  
 

1 1 1

(0) (0) (0)

0 , 0 , 0 ,

(0) (0) (0)

, , ,

0, 0, 0,

0, 0 0

x xy xz

x xy xz

j k j k j k

N j k N j k N j k

  

  

  

  
  (39) 

 

for :y b  

2 2 2

(0) (0) (0)

,0, ,0, ,0,

(0) (0) (0)

, , ,

0, 0, 0,

0, 0 0

y xy yz

y xy yz

i k i k i k

iN k iN k iN k

  

  

  

  
  (40) 

for :z c  
 

2 2 2

(0) (0) (0)

, ,0 , ,0 , ,0

(0) (0) (0)

, j, , j, , j,

, 0, 0,

, 0 0

z xz yz

z xz yz

i j i j i j

i N i N i N

S

S

  

  

  

  
   (41) 

 

According to relations (20-22), additional boundary conditions have the form: 

For  :  x a  
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1 1

1 1

1 1

(0) (0)

0, , 1 0, , 1(0) (0)

0, , 0, 1, 2

3

(0) (0)

, , 1 , , 1(0) (0)

, , 1, 2

3

(0) (0)

0, 1, 0, 1,(0) (0)

0, , 0, , 1 3

2

(0) (0)

, , , 1 3

,
2

2

,
2

yz yz

y y

yz yz

y y

yz yz

z z

z z

j k j k

j k j k

n j k n j k

n j k n j k

j k j k

j k j k

n j k n j k

h
h

h
h

h
h

h

 
 

 
 

 
 

 

 



 



 






 


 


 

 
1 1

1 1

(0) (0)

, 1, , 1,

2

(0) (0)

0, , 1,

(0) (0)

, , 1, ,

2

yz yz

yz yz

yz yz

n j k n j k

j k jk

n j k n j k

h

 

 

 

 









   (42)  

 

for :y b  

2 2

2 2

2 2

(0) (0)

,0, 1 ,0, 1(0) (0)

,0, 1,0, 1

3

(0) (0)

, 1 , , 1(0) (0)

, , 1, , 1

3

(0) (0)

1,0, 1,0,(0) (0)

,0, ,0, 1 3

2

(0) (0)

, , , , 1

,
2

2

,
2

xz xz

x x

xz xy

x x

xz xz

z z

z z

i k i k

i k i k

in k i n k

i n k i n k

i k i k

i k i k

i n k i n k

h
h

h
h

h
h

h

 
 

 
 

 
 

 

 



 



 






 


 


 

 

2 2

(0) (0)

1,0, 1,0,

3

2

(0) (0)

,0, ,1,

(0) (0)

, , , 1,

2

xz xz

xz xz

xz xz

i k i k

i k i k

i n k i n k

h

 

 

 

 









  (43) 

For :z c  

3 3

3 3

3 3

(0) (0)

, 1,0 , 1,0(0) (0)

, j,0 1, j,0 1

3

(0) (0)

, 1, , 1,(0) (0)

, , 1, , 1

3

(0) (0)

1, ,0 1, ,0(0) (0)

, ,0 , 1,0 2

3

(0) (0)

, , , 1,

,
2

2

,
2

xy xz

x x

xz xy

x x

xy xy

y y

y y

i j i j

i i

i j n i j n

i j n i j n

i j i j

i j i j

i j n i j n

h
h

h
h

h
h

 
 

 
 

 
 

 

 



 



 






 


 


 

 
3 1 3

3 3

(0) (0)

1, , 1 , ,

2

3

(0) (0)

, j,0 , j,1

(0) (0)

, j, , j, 1

2

xy xy

xy xy

xy xy

i j n i j n

i i

i n i n

h
h

 

 

 

 









   (44) 
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Finite difference equations (33-44) can be solved by iteration method. These schemes 

converge because they satisfy the conditions of diagonal dominance. Initial values can be 

obtained as trivial. 

5 Results and discussion 

This section is devoted to the numerical solution and justification of the validity of the 

formulated boundary value problem on the equilibrium of a parallelepiped under stresses 

(10-17). Let the origin of the coordinate system be in the center of a parallelepiped of size 

1 2 3
2 ,   2   2l a l b l с   , and it is in equilibrium under the action of a domed load applied on 

opposite faces perpendicular to the OZ axis (Fig. 1). The remaining faces are free from 

loads. This problem using the variational method based on the Castigliano functional was 
considered in the works of Filonenko-Borodich [3]. 

In this case, the boundary conditions have the form 

 

for x a  : 0,    0,    0
x xy xz

      

for y b  : 0,    0,    0
y xy yz

       (45) 

for z c  :  ,    0,    0
z xz yz

S    
 

 

Let the applied load have a domed shape, i.e.,  
2 2

cos(1 )cos(1 )
x y

S
a b

 
   . 

In this case, the initial data had the following values: 

 

1 2 3

0.8,  0.5,

 0.5,  0.5,   c 1,  

0.1, 0.2,

a b

h h h

  

  

  
 

 

In our case, this problem is described with differential equations (10-17) with 

corresponding boundary conditions (18) and additional boundary conditions (20-22). The 

iterative method solves the finite-difference equations and boundary conditions 

corresponding to this boundary value problem (33-44). 

The first line of Table 1 shows the stress values along the OZ (-c,+c) line passing 

through the center of the parallelepiped and compared with the results of other authors. It 

can be seen from the table that the maximum value of the applied load S in the center of the 

face z c is 4, and the calculated value also turned out to be 4.00
z

  , and in [18], the 

considered value is equal to 3.9279
z

  . 

Table 1. Problems in y and x and corresponding stresses and didplacements 

Problems 
y=0; x=0 

z=-1 z=-0.8 z=-0.6 z=-0.4 z=-0.2 z=0 

In stresses 4.0000 3.2065 2.5657 1.9248 1.6807 1.4365 

In displacements 3.9279 2.7025 2.3333 1.8701 1.5437 1.4294 

 

In [18], the problem was formulated concerning displacements, and when discretizing, the 

boundary conditions have the first order of approximation, so, apparently, underestimated 

values are obtained. At the center of the parallelepiped, the stress value is equal to 

1.4365
z

   , and in work [3] of Filonenko-Borodich 1.47
z

  , and in work [18], it is 
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equal to 1.4294
z

  . It took t=14 iterations to obtain numerical results. The closeness of 

the obtained results shows the validity of the formulated boundary value problem in stresses 

and the method of their solution. On fig. 2 shows a graph of stress distribution 
z

  in the 

central plane z=0 at y=0. In this figure, the solid line is built according to the results of the 

problem in stresses, and the dotted curve is according to the problem's solution in 

displacements [18]. As shown in Fig. 2, the results of the solved boundary value problems 

in stresses and displacements coincide with some errors. Some deviations of the dotted line 

from the solid line can be connected, apparently, with the error of differentiation of the 

boundary conditions since it has the first order of approximation. 

 

 

Fig. 2. Boundary value problems in stresses and displacements 

The problem of parallelepiped compression under the action of a uniformly distributed load 

(S=1) applied along the faces perpendicular to the OZ axis is also solved. Then the stress 

values along the entire parallelepiped are equal to 
33

1  , which is equal to the applied 

load (Table 2). This position also shows the validity of the formulated boundary value 

problems in stresses and numerical results. 

Table 2. Problems y and z values for different x intervals 

Problem 
y=0; 

x=-0.5 x=-04 x=-0.3 x=-0.2 x=-0.1 x=0 

z=1 1.000 1.000 1.000 1.000 1.000 1.000 

z=0.5 1.000 1.000 1.000 1.000 1.000 1.000 

z=0 1.000 1.000 1.000 1.000 1.000 1.000 

 

6 Conclusions 

In this work, based on the Beltrami-Michell equations, a spatial boundary value problem of 

the theory of elasticity in stresses for a parallelepiped is formulated. The boundary value 

problem consists of three equilibrium equations and three Beltrami Michell equations (of 
the second group). It is shown that on each face of the parallelepiped, it is necessary to set 
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three ordinary surface boundary conditions and three additional conditions based on the 

equilibrium equation, which ensures the correctness of the formulation of the problem in 

stresses. Symmetric finite-difference equations are constructed for the spatial boundary 

value problem in stresses, which are solved by the iteration method. The problems of 

equilibrium of a parallelepiped under the action of dome-shaped and uniformly distributed 

loads applied on opposite sides of the parallelepiped are solved numerically. The reliability 

of the results is ensured by comparison with the numerical results of the Lame equations 

obtained in other works, as well as with the well-known Filonenko-Borodich solution. 
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