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Abstract. The properties of cross-diffusion systems, which have double 

nonlinearity and include convective transfer, are investigated. This means 

that two factors are taken into account in the system: diffusion (random 

movement) and convection (transfer with the participation of the medium 

flow). The study of the properties of such systems makes it possible to 

understand how the interaction of these factors can influence the behavior 

of a population. The simulation of the processes of multicomponent cross-

diffusion systems of a biological population with convective transfer on a 

computer is described. This means that with the help of numerical methods 

and computer models, models have been created that make it possible to 

simulate and study these systems. Such modeling helps to get an idea about 

the behavior of a cross-diffusion system under various conditions and 

system parameters. Estimates are obtained for solving the Cauchy problem 

of multicomponent cross-diffusion systems with convective transfer, which 

are analytical estimates of solutions. The study of the qualitative properties 

of the system made it possible to perform a numerical experiment 

depending on the values included in the system of numerical parameters. 

1 Introduction 

The utilization of mathematical models and their numerical solutions is an essential aspect 

of the rapid development of science and technology [1]. Applied mathematics investigates 

mathematical models for various physical and biological phenomena [2]. These models 

usually use linear differential equations with general solutions [3]. However, in practical 

situations, nonlinearities often arise, and we must use linear models to correctly depict the 

underlying physical processes [4-5]. Many practical problems are expressed as nonlinear 

differential equations or systems of equations with a specified product under boundary 

conditions [6]. These multidimensional problems can be solved analytically in some cases, 

but most of the time, we must rely on approximate solutions [7,8]. Approximate calculation 

methods can help us obtain solutions and analyze them, allowing us to better understand the 

processes under investigation [2,9]. In the numerical solution of mathematical physics 

problems, finite difference or grid methods are commonly used. The theory of numerical 

methods faces two primary issues [3]: 
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Constructing a discrete (differential) approximation of the equations of mathematical 

physics, assessing the approximation error, investigating the stability of the differential 

scheme's solution, and the accuracy of the resulting differential scheme [10]. 

Solving the differential equation system by explicit (correct) or iterative methods while 

ensuring the efficiency of the computational algorithm [11]. 

2 Methods 

When convective transport ( , )( 1, )iu t x i n  is present, for a system with n components, the 

local mass balance equations can be expressed as a system [1,12]. 
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positive numerical parameters, and solutions of the cross-diffusion system of the biological 

population. 

Numerous studies have investigated different properties of system solutions, such as 

solution localization and asymptotic behavior of self-similar solutions. The numerical 

aspects of solving system (1) have been discussed in [3,13], while the properties of the 

solution have been studied using the method of nonlinear separation in [2,14]. In [1], the 

asymptotics of self-similar systems have been examined. In this study, we focus on the case 

where N = 2 and construct self-similar solutions of the system of equations for (1) as 

follows: 
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after modification 

 

 

1

2 2( ) ( ) ( ) , ln( ) , ( ) ( ) .
si

i i i i i
f f y a f A a            

 
(8) 

 

We obtain the following expression from (1): 

 

 
' 1 ' '3

1 2 6 3 3 3 ,1 3 3 3 1

3 3
4 3 5 3

'

0.

s i
i i i i i i i i i i i i i i

s p q si i i i
i i i i i i

y a y a a y a a a y y y a y

a y y a y y

    
           

  
 

       

  

 (9) 

Here 

 

1 1
, 1 , ,

1 2 1 3 322 2

11 113 3( 1) , ,
4 3 5 34 4

11 3 , 1 , 1, 2;
6 34

3

N
a a a a s
i i i i is aei

l
is p q s ei i i ia A ae a A A

i i i i i i i
a e

q ps
i iia A l i

i i i i s s
i i






 




     





  

   
  




    




  (10) 

 

3
1 2 32

1

3 3

2 1, ,
42

1 .
4

si i
i i i i

ii

p q si i
i i i i

s
b b A

ss

b A A
a





 


 




 



 (11) 

 

Equations for the existence of a solution of the system (9) 
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can be obtained by solving nonlinear algebraic systems in the form of
0

iy  (i=1,2), and the 

solutions: 

 

 

3 3

2 1 2 1

2 1 2 1 2

3

1

1 2 3 3 3

1

1 2 11 12 2 13 1 1 21 22 1

1

1 2 11 12 2 21 22 1 23 1 2

1 2 3

1. 0, 0,

2. 0, 0, 0, 0,

3. 0, 0, 0, 0,

4. 0 , 0.

i i i i

i

i

s p q s

i i i i i i i

ps q s s

s s q s p

s

i i i i

l b b z b z z

l l b b z b z z b b z

l l b b z b b z b z z

l b b z

 



  

 

  

   





   

      

      

  

 

 

(13) 

 

Investigating the system's qualitative properties suggests a numerical experiment using 

the numerical parameter system should be conducted. Asymptotic solutions were 

constructed as an initial approximation for this purpose. To linearize the system, Newton's, 

Picard's, and special linearization methods were utilized for the numerical solution of the 

problem [1-3,15]. The numerical experiment's results indicate that the proposed approach is 

effective. 
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3 Results and discussion  

The method of undetermined coefficients involves constructing a differential scheme as a 

linear combination of the unknown grid function values at the nodal points of the stencil. 

The coefficients of this combination are determined by requiring that the differential 

equation represented by the scheme be approximated to the highest possible order on the 

grid layers [16]. 

For example, for the equation 
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The now differential equation we can find the approximate differential equation in the 

template. In this case, a differential scheme will be in the form [17] 
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In this case 
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After expanding the Taylor series and simplifying similar terms, we obtain the 

following expression [18]: 
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In the last equation, we require that the following be done: 
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Solving this system of equations enables us to determine the values of unknown 

parameters [19] 
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, , ,    If we substitute the found values of the parameters into equation (16), we 

obtain the form of the difference scheme we have constructed [20]: 
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To find a solution to the different equations, we use the iteration method constructed as 

follows [22]: 
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The difference scheme (28) concerning the function 
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and 
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will be linear. 

The functions of the previous time step are taken as the initial iteration:
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convergence of the iteration is ensured. 

A computational experiment was carried out for various parameter values (Table 1, 

Table 2). The results of the experiment with fast diffusion are shown in Table 1. As an 

initial approximation 
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0v  we took the functions:  
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Table 1. Results of numerical experiments 

Parameter values 

Results of the counting 

experiment at the 

beginning of the moment 

results of the counting 

experiment in the final 

moment of time 

1 20.8, 0.7, 2.1m m p  

310eps   

1 22 5    

3 0im p    

3n   

 
 

1 20.4, 0.5, 2.2m m p  

310eps   

1 22 2    

3 0im p    

5n   

  
 

The results of the computational experiment with slow diffusion are given in Table 2. As 

the initial approximation 0u , 0v  we took the functions: 
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Table2. Results of numerical experiments
 

Parameter values 

Results of the counting 

experiment at the beginning 

of the moment 

results of the counting 

experiment in the final 

moment of time 

1 21.9, 5, 2.5m m p  

 
310eps   

1 21.5 2    

3 0im p    

3n   

  

1 21.5, 2, 2.5m m p  

310eps   

1 21.5 2    

3 0im p    

5n   

  

Due to the correct choice of the initial approximation, the number of iterations in the 

computational experiments performed does not exceed six. The experiment was carried out 

for various values of the parameters of the system of equations. The number of iterations is 

given in Table 3. 

Table 3. Number of iterations for different parameters 

eps 1m  2m  p 1  2  k 
Average number 

of iterations 
310

 4.1 4.0 4.4 1.0 1.0 0.5 3 

510
 5.7 5.4 3.0 2.0 2.0 3.0 4 

310
 3.7 3.3 4.0 2.0 0.5 0.1 3 

510
 2.5 2.4 3.1 2.0 0.5 0.5 4 

310
 5.1 5.3 3.5 3.0 0.3 1.5 3 

510
 3.0 3.2 3.0 3.0 3.0 1.0 6 

310
 5.0 5.2 3.0 10.0 5.0 2.0 2 

510
 2.7 2.5 5.4 3.0 2.0 2.0 6 

310
 3.7 3.5 7.4 2.0 3.0 3.0 3 

310
 3.0 3.5 7.0 14.0 7.0 2.0 5 

time1 FRAME 3( ) time2 FRAME 3( )
time1 FRAME 3( ) time2 FRAME 3( )

time1 FRAME 3( ) time2 FRAME 3( ) time1 FRAME 3( ) time2 FRAME 3( )
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4 Conclusion 

Studies have been carried out on the properties of cross-diffusion systems with double 

nonlinearity and convective transfer. Computer simulations of multicomponent cross-

diffusion systems processes with convective transfer were carried out. This means that with 

the help of computer programs and numerical methods, models have been created that 

make it possible to simulate and study the behavior of such systems. Such modeling allows 

one to understand the dynamics and interaction of components in cross-diffusion systems, 

taking into account convective transport. The properties of cross-diffusion systems with 

double nonlinearity and convective transfer have been studied. These studies can help better 

understand the dynamics and interactions of components in such systems and apply the 

knowledge gained in various areas where it is important to consider cross-diffusion and 

convective transport, such as biology and population ecology. 
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