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Abstract. The problems of the oscillatory flow of a viscoelastic fluid in a 

flat channel for a given harmonic oscillation of the fluid flow rate are 

solved based on the generalized Maxwell model. The transfer function of 

the amplitude-phase frequency characteristics is determined. Using this 

function, the dependence of the hydrodynamic resistance on the 

dimensionless oscillation frequency is studied for various values of the 

elastic Deborah number and the concentration of the Newtonian fluid. It is 

shown that in an oscillatory flow of a viscoelastic fluid, the hydrodynamic 

resistance decreases depending on the Deborah number. With an increase 

in this number, the decrease becomes more pronounced than before. This 

effect allows us to evaluate the hydrodynamic resistance for a given law; 

the change in the longitudinal velocity averaged over the channel section 

and for the motion of a viscoelastic fluid in an unsteady flow allows us to 

determine the dissipation of the mechanical energy of the medium, which 

is important in the regulation of hydraulic and pneumatic systems. 

1 Introduction 

The study of pulsating flows of a viscoelastic fluid in a flat channel and a cylindrical pipe 

under the influence of harmonic oscillations of the pressure gradient or when harmonic 

oscillations of the flow rate are superimposed on the flow is of practical interest. In [1], the 

flow of viscoelastic fluids along a long pipe under the periodic pressure gradient was 

studied. The distinctive features of this flow are shown in comparison with the 

corresponding flow of the Newtonian fluid. The inertialess oscillatory flow of a viscoelastic 

fluid in an infinite circular pipe under an oscillatory pressure gradient was studied in [2]; it 

was shown that in an oscillating flow, the longitudinal velocity profiles were symmetric and 

there was a significant phase shift between the pressure gradient and velocity. The phase 

shift was absent in pulsating flows, and the axial velocity changed asymmetrically relative 

to its average oscillation period. Laminar oscillatory flows of Maxwell and Oldroyd - B 

viscoelastic fluids were studied in [3, 4]. Many interesting features missing in the 

Newtonian fluid flows were shown in the study. 
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The results of the study given in [3] show that in the inertialess mode for Re 1 , the 

properties of the flow depend on three characteristic lengths. Wavelength 0 and 

attenuation length of viscoelastic shear waves 
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, here   is the kinematic 

viscosity; 0 is the oscillation frequency, and a  is the characteristic transverse size of the 
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 systems. In wide systems, the oscillations are limited by near-wall flows and in 

the central core by frictionless flows. In narrow systems, transverse waves across the entire 

system and cross its center, leading to constructive resonances followed by a sharp increase 

in the amplitude of the velocity profile.   

In [5], unsteady flows of a viscoelastic fluid were analyzed on the Oldroyd-B model in a 

round infinite cylindrical pipe under a time-dependent pressure gradient for the following 

cases: a) the pressure gradient changes with time according to the exponential law; b) the 

pressure gradient changes according to the harmonic law; c) the pressure gradient is 

constant. In all cases, formulas were obtained for the velocity distribution, fluid flow, and 

other hydrodynamic values in a pulsating flow. The problem of unsteady oscillatory flow of 

a viscoelastic fluid in a round cylindrical pipe was considered in [6] based on the Maxwell 

model. Formulas for determining dynamic and frequency characteristics were obtained. 

Numerical experiments are used to study the influence of the oscillation frequency and the 

relaxation properties of the liquid on the tangential shear stress on the wall. It was shown 

that the viscoelastic properties of the fluid and its acceleration are the limiting factors for 

using the quasi-stationary approach. 

In recent decades, electro-kinetic phenomena, including electro-osmosis, flow potential, 

electrophoresis, and sedimentation potential, have received much attention and provided 

many applications in micro and nanochannels. In this regard, in [7, 8], the electro-kinetic 

flow of viscoelastic fluids through flat channels under the influence of an oscillatory 

pressure gradient was studied. It was assumed that the fluid flow is laminar and 

unidirectional; therefore, the fluid flow has a linear mode. The surface potentials are 

considered small, so the Poisson-Boltzmann equation is linearized. A resonant behavior 

appears in the flow when the elastic properties of the Maxwell fluid predominate. The 

resonant phenomenon amplifies the electro-kinetic effects and the efficiency of electro-

kinetic energy conversion. Unsal B., Ray S.,  Marx U., Wallis H., Inman W., Domanskiy 

K., Tsangaris S., Vlachakis N.W. for determination of hydrodynamic resistance. The 

oscillatory flow was studied by such scientists as [9-14]. 

In the publications listed above, the velocity field of fluids is mainly investigated for 

various modes of change in the pressure gradient. The change in tangential and normal 

stresses arising in the flow was studied insufficiently. In most cases, in hydrodynamic 

models of unsteady flows, liquids were replaced by a sequence of flows with a quasi-

stationary distribution of hydrodynamic values. However, the structure of unsteady flows 

differs from the structure of stationary flows, and such a replacement must be justified in 

each specific case. The question of the relevancy of studying quasi-stationary 

characteristics for determining the field of shear stresses in nonstationary flows of viscous 
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and viscoelastic fluids is far from being resolved. Naturally, under such conditions, it 

becomes necessary to use hydrodynamic models of nonstationary processes that consider 

the change in the hydrodynamic characteristics of the flow depending on time. It should be 

noted that, in the general case, hydrodynamic characteristics in pipeline transportation 

could not be determined from characteristics that correspond to stationary flow conditions. 

In this paper, the authors studied the oscillatory flow of a viscoelastic fluid on the 

generalized Maxwell model in a flat channel when harmonic oscillations of the fluid flow 

rate are superimposed on the flow. The transfer function of the amplitude-phase frequency 

characteristics (APFC) is determined. This function is used to analyze the change in 

hydrodynamic resistance during an oscillatory flow of an elastic-viscous fluid depending on 

the dimensionless oscillation frequency. 

2 Materials and Methods 

Let us consider the problems of a slow oscillatory flow of a viscous elastic incompressible 

fluid between two fixed parallel planes extending in both directions to infinity. Let us 

denote the distance between the walls by 2h . The 0x -axis runs horizontally in the middle 

of the channel along the flow. The 0 y -axis is directed perpendicular to the 0x -axis. The 

flow of a viscoelastic fluid occurs symmetrically along the channel axis. The differential 

equation of motion of a viscous elastic incompressible fluid in stress has the following form 

[15-20]: 

u p

t x y



  

  
  

    (1)

 

where u is the longitudinal velocity; p  is the pressure;   is the density;   is the 

tangential stress; t  is time. 

The rheological equation of the state of the fluid is taken in the form of the generalized 

Maxwell equation [3, 7]  

, ,
p

s p s s p p

u u

y t y


       

 
      

  
  (2)

 

Here   is the relaxation time; s  is the tangential stress of the Newtonian fluid; p is 

the tangential stress of the Maxwell fluid;   is the tangential stress of the solution; s is the 

dynamic viscosity of the Newtonian fluid; p  is the dynamic viscosity of the Maxwell 

fluid. Scientists such as Momoniat E., Ali F., Khan I. Thorough review of nonstationary 

and stationary and second-order MHD fluid flow in Refs used FDM (finite difference 

method) and L1 schemes to obtain numerical solutions to the process [21–24]. The 

following equality is fulfilled between dynamic viscosities [3, 7] 

0 s p     

where 0  is the dynamic viscosity of the solution. 

Substituting (2) into the equation of motion (1) for the fluid velocity, we obtain 

2 2

2 2
1 1 1s p

u p u u

t t t x t y y
     
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   (3) 
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We consider that the oscillatory flow of a viscoelastic fluid occurs due to given 

harmonic fluctuations of the fluid flow rate or the longitudinal velocity averaged over the 

channel section. 

Re i t
Q QQ a cos t a e  

,        
Re i t

u uu a cos t a e     

where Qa  and ua are the amplitudes of the fluid flow rate and the amplitudes of the 

longitudinal velocity averaged over the channel section, respectively. In this case, the flow 

moves symmetrically along the channel axis, and the no-slip condition is satisfied for the 

channel wall, i.e., the longitudinal velocity on the channel wall is zero. Then the boundary 

conditions are: 

0u   for  y h
 ,       

0
u

y





      for     0y     (4) 

Due to the linearity of equation (3), the longitudinal velocity, pressure, and shear stress 

on the wall can be written as  

   1, Re i tu y t u y e 
,

   1, Re i tp x t p x e 
,
  1Re i tt e     

 (5)
 

Substituting (5) into equation (3), we obtain 
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The following functions are the fundamental solutions of equation (6) without the right-

hand side  
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And the solution of the non-homogeneous part has the following form 

11 ( )p x
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Thus, the general solution to equation (6) is 
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3 3
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  (7) 
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To determine the constant coefficients 1C  and 2C  , we use boundary conditions (4) 

 

 
     

3/2 3/2
1 3/2 3/20 0

1 0 2 0sin ( ) cos
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   (8) 

for 0y  , (8) has the following form 
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0
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i
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h


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from here, it is easy to find 

2 0C   

1C  is determined from (7)  under the condition that ( , ) 0u y t   for y h  

1
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As a result of this, we determine the velocity: 
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   (9) 

where  0
0

h





  is the Womersley vibrational number (dimensionless vibration 

frequency); 0  is the kinematic viscosity of the solution. 

Using the following equation 

 10
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u y
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
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we obtain the tangential shear stress on the wall 
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i i i iP
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  (11) 

Now we integrate both sides of formula (9) concerning variable y  ranging from h  to 

h , and obtain formulas for the fluid flow rate 
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Considering formula (12) that 1 12 ,Q h u   we find the longitudinal velocity averaged 

over the channel section 

 
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  (13) 

Here i   can be written in the following form 

2 20 0
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Then formula (13), concerning (11), takes the following form: 
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 (14) 

Using the formula (14), we determine the transfer function  ,uW i   for the shear stress 

on the walls as 

 
 
 1 1

1
,

0 13
u

ih
W i

u i


 


 
     (15) 

Taking into account (15) from equation (14), we obtain  
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2
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1
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    (16) 

 

The transfer function (16) is sometimes called the amplitude-phase frequency characteristic 

(APFC). This function makes it possible to estimate the hydraulic resistance for a given law 

of change in the longitudinal velocity averaged over the channel section since its real part 

allows us to determine the active hydrodynamic resistance, and the imaginary part is the 

reactive resistance or inductance of the oscillatory flow. 

3 Results and Discussion 

The hydrodynamic resistance under oscillatory flow in Newtonian and viscoelastic flows is 

determined by the ratio of the pressure gradient to the average velocity, sometimes referred 

to as the "impedance" of the flow. The ratio of the pressure gradient to the average velocity 

is found from the following formula (13) 
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      
   

 (17) 

Here 0 2
R

h


  is the hydrodynamic resistance of the Newtonian fluid at a steady flow. 

Separating the real and imaginary parts of formula (17), we determine the total 

hydrodynamic resistance R  and inductance L : 

 

 
 

 2 2 2 2 2
0 1 1 1 1

2 22 2 22 2
0 2 22 2

, ,
A B A BL

R B A
A BA B
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 
 


 

where 

 

   

1 1 1 1 1 1

2 2
2 1 1 1 1 2 1 1

1 1 1 1

0 0
1 1 1 1 1 1 1 2

, ,

,

sin , cos .

sin , cos , , ,
2 2

A AM BM B AM BM

A A B AC B D B B C A D

C M chM D M shM

A M shM B M chM M G M G
 

   

     

  

     

 
1 1 2 2 1 2 1 2 1 2*
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i 
       

 2 2 2 2
1 1 2 2 1 2

2 2
cos , sin , 0,1;

2 2

n n
G G G G G G n

    
    

 

 

2 4 2
1 0 0 12

1 2* 2 2 4
1 1 0

2 4 2
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1 22 2 4 2 2 4
1 0 1 0

1 (1 )1
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1 1

De X iDe XG
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G i De X
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G G

De X De X

 
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  

 

 

  
   



 
 

 

 

1 12 2
0 0

2
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1 1 1 12
0

2 2
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1 1
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1

, .
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i X Z
iDe iDe

iDeX
X Z X Z

iDe

De h
h


 

   

   

   

 




   
       
       


     



 

 

 

The results of studies (17) for the Newtonian fluid are given in [7, 9, 10]. Figure 1 shows 

the dependence of the hydrodynamic resistance on the dimensionless oscillation frequency 

0 when the elastic number is 0.05De  and for different concentrations of the Newtonian 

fluid in the solution. 
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Fig.1. Dependence of hydrodynamic resistance on dimensionless frequency of oscillations 0  for 

different concentrations of Newtonian fluid, for 0.05De  . 

 

The graph in Figure 1 shows for 1X   the change in the total hydrodynamic resistance of 

the Newtonian fluid in an oscillatory flow; it coincides with the results of other researchers 

[7, 9]. It can be seen from this graph that with an increase in the dimensionless oscillation 

frequency 0 , the total hydrodynamic resistance of the Newtonian fluid increases 

monotonically. Curves 2-5 in Figure 1 characterize the change in hydrodynamic resistance 

in an oscillatory flow of an elastic-viscous fluid with a low elastic Deborah number, with 

the addition of Newtonian fluid. Indeed, curves 2-5 differ little from curve 1, so, in this 

case, instead of the hydrodynamic resistance of an elastic-viscous fluid, one can take the 

hydrodynamic resistance of a Newtonian fluid. 

 

 
Fig. 2. Dependence of hydrodynamic resistance on dimensionless oscillation frequency 0 at 

different concentrations of Newtonian fluid, for  0.5De  . 
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Fig. 3. Dependence of hydrodynamic resistance on dimensionless oscillation frequency 0 at 

different concentrations of Newtonian fluid, for 1De  . 

 

 
Fig. 4. Dependence of hydrodynamic resistance on dimensionless oscillation frequency 0  at 

different concentrations of Newtonian fluid, for 2De  . 

 

However, with an increase in the elastic Deborah number, there is a significant difference 

between the hydrodynamic resistances of an elastic-viscous fluid compared to the 

Newtonian fluid. This difference is shown in Figures 2.2- 2.4 for increasing values of 

elastic Deborah number. Starting from the elastic Deborah number 0.5De  , there is a 

decrease in hydrodynamic resistance depending on the concentration of the Newtonian fluid 

(curves 3-5 in Figure 2.3). The solution has viscoelastic properties when there is no 

Newtonian fluid in it. In such cases, in an oscillatory flow, the hydrodynamic resistance of 

elastic-viscous fluid changes in an oscillatory manner depending on the dimensionless 
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oscillation frequency 0 , and it increases with an increase in the elastic Deborah number 

(curves 5 in Figures 2-4).  

The content of the Newtonian fluid in the solution smooths out the oscillatory mode of 

the change in the hydrodynamic resistance (curves 3.4 in Figures 2-4). In the general case, 

at an oscillatory flow of a viscoelastic fluid, the hydrodynamic resistance decreases in the 

intermediate value 01 3 
 
of the dimensionless oscillation frequency to a maximum. 

Then it increases with an increase in the frequency. The effect obtained makes it possible to 

evaluate the hydrodynamic resistance for a given law of the change in the longitudinal 

velocity averaged over the channel section for the flow of a viscoelastic fluid in an unsteady 

flow; it makes it possible to determine the dissipation of the mechanical energy of the 

medium, which is important in the regulation of hydraulic and pneumatic systems. 

4 Conclusions 

The problems of an oscillatory flow of a viscoelastic fluid in a flat channel for a given 

harmonic oscillation of the fluid flow rate are solved based on the generalized Maxwell 

model. The transfer function of the amplitude-phase frequency characteristics is 

determined. Using this function, the dependence of the hydrodynamic resistance on the 

dimensionless oscillation frequency is studied for various values of the elastic Deborah 

number and the concentration of the Newtonian fluid. It is shown that in an oscillatory flow 

of a viscoelastic fluid, the hydrodynamic resistance decreases depending on the Deborah 

number. With an increase in this number, the decrease becomes more pronounced than 

before. This effect allows us to evaluate the hydrodynamic resistance for a given law; the 

change in the longitudinal velocity averaged over the channel section and for the motion of 

a viscoelastic fluid in an unsteady flow allows us to determine the dissipation of the 

mechanical energy of the medium, which is important in the regulation of hydraulic and 

pneumatic systems. 

References 

1. Jones J.R., Walters T.S. (1967). Rheol. Acta. Part 1. Vol. 6, 1967. 240-245 

2. Khabakhpasheva  E., Popov V., Kekalov A. and Mikhailova  E.(1989).  J. Non-

Newtonian Fluid Mech. Vol.33(3), 1989. 289-304 

3. Casanellas L., Ortin J. (2011). J. Non-Newtonian Fluid Mechanics. 166. 2011. 1315-

1326 

4. Casanellas L., Ortin J. (2012) Rheol . Acta., 51, 2012. 545-557 

5. Hassan A.Abu-El and El-Maghawru E.M. (2013) Rheology-New concepts. 

Applications and Methods Ed by Durairaj R. Published by In Tech. 6, 2013. 91-106    

6. AkilovZh.A., Dzhabbarov M.S. and Khuzhayorov B.Kh. (2021) Fluid Dynamics 

Research, Vol. 56, 2021. 189-199 

7. Ding Z., Jian Y.,Tan W. (2019). J.  Fluid. Mech., 863, 2019. 1062-1090 

8. Ding Z., Jian Y. (2021) J. Fluid. Mech., 2021. doi:10.1017/j fm. 2021. 380 A20.1-31. 

9. Ünsal B., Ray S., Durst F., Ertunç Ö. (2005). Fluid Dynamics Research. Vol. 37, 2005. 

317-333 

10. Marx U., Wallis H., Hoffmann S., Linder G., Harland R., Sonntag F., Klotzbach U., 

Sakharov D., Tonevitskiy A., Lonster R. (2012), ATLA Vol. 40, 2012. 235-257    

11. Inman W., Domanskiy K., Serdy J., Ovens B., Trimper D., Griffith L.G. (2007), J. 

E3S Web of Conferences 401, 02026 (2023)

CONMECHYDRO - 2023
https://doi.org/10.1051/e3sconf/202340102026

10



Micromech. Microeng. Vol. 17, 2007. 891-899 

12. Valueva E.P., Purdin M.S. (2015) 9, 2015. 24-33 

13. Tsangaris S., Vlachakis N.W. (2003),  ZAMP. Vol. 54, 2003. 1094-1100  

14. Tsangaris S., Vlachakis N.W. (2007), Appl. Math. Modelling. Vol. 31, 2007. 1899-

1906.  

15. Popov D.N. Nonstationary hydromechanical processes.(1982), M.: Mashinostroenie 

16. Astarita J., Marrucci J. Fundamentals of hydromechanics of non-Newtonian fluids. 

(1978), M.: Mir 

17. Loitsyansky L.G. Mechanics of liquid and gas. (2003), M.: Drofa 

18. Kolesnichenko V.I., Sharifulin A.N. Introduction to the mechanics of an 

incompressible fluid. (2019), Perm, Ed. Perm National research political university 

19. Navruzov K., Khakberdiev Zh.B. Dynamics of non-Newtonian fluids.(2000),  

Tashkent, Fan 

20. Schlichting G. Theory of the boundary layer.(1974),  M.: Nauka 

21. Momoniat, E. A point source solution for unidirectional flow of a viscoelastic fluid. 

Phys. Lett. A 372(22), 4041–4044 (2008).  

22. Ali, F., Khan, I. & Shafie, S. Closed form solutions for unsteady free convection flow 

of a second grade fluid over an oscillating vertical plate. PLoS ONE 9(2), e85099 

(2014). 

23. Ali, F. & Sheikh, N. A. Introductory Chapter: Fluid Flow Problems (IntechOpen, 

2018).  

24. Ali, F., Sheikh, N. A., Saqib, M. & Khan, I. Unsteady MHD flow of second-grade fluid 

over an oscillating vertical plate with iso- thermal temperature in a porous medium 

with heat and mass transfer by using the Laplace transform technique. J. Porous Media 

20(8), 671 (2017). 

 

E3S Web of Conferences 401, 02026 (2023)

CONMECHYDRO - 2023
https://doi.org/10.1051/e3sconf/202340102026

11


