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Abstract. The article proposes a formula for calculating scheme viscosity, 
which manifests itself in calculations using implicit schemes for 
calculating the transfer of matter and momentum. The study aims to 
substantiate the structure of the formula for calculating the scheme 
viscosity using implicit schemes for calculating the mass and momentum 
transfer equation. As a result of the study, the structure of the formula for 
calculating the scheme viscosity for implicit schemes for solving the 

transfer equation was determined. The accuracy of the formula was 
checked on a test example. It is substantiated that by all possible means, it 
is necessary to avoid using implicit schemes when solving problems of 
small-scale circulation within urban areas. The manifestation of scheme 
viscosity in calculations of small-scale circulation, in which small pressure 
drops provide air movement, is unacceptable due to the many times the 
greater effect of scheme viscosity over natural viscosity.   

1 Introduction 

When solving equations in partial derivatives by the method of finite differences, various 

algebraic constructions are used, which are analogs of differential terms. These 

constructions are called finite difference schemes [1]. If, when solving by algebraic 

methods, the desired characteristic at any point can be determined for this isolated point in 

the calculated time layer and based on one algebraic equation, then such schemes are called 

explicit. Suppose the solution can be obtained only by considering all points simultaneously 

in their relationship on the calculated time interval that is, by solving systems of algebraic 
equations. In that case, such schemes are called implicit [2]. 

The solution obtained using finite difference methods is almost always somewhat 

smoothed (averaged). For example, when solving a simple equation for the transfer of 

matter, the solution is obtained as if the equation contains terms responsible for the 

diffusion of matter [3]. Moreover, no such terms exist in writing the equation and its finite-

difference analog. Nevertheless, the solution behaves like these terms exist and participate 

in the calculation. The action of these imaginary terms is called the manifestation of 
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artificial computational viscosity or numerical diffusion. The coefficient of this numerical 

diffusion can be calculated using the well-known formula of computational aerodynamics 

[2], [4–8]. 

However, this formula is derived only for explicit finite difference schemes. The 

method for calculating the circuit's computational viscosity, which manifests itself when 

using implicit finite-difference schemes, must be developed. 

Implicit schemes are widely used in computational tools for various mathematical 

models of aero and hydrodynamics. Atmospheric circulation models almost always have a 
computational mechanism based on implicit schemes. This is due to the increased 

computational stability of implicit calculation schemes. However, what value does the 

computational viscosity show up in such calculations, and how can it be estimated? This 

question still needs to be definitively answered. Suppose in large-scale circulation 

calculations, all parameters of the moving atmosphere are sufficiently smoothed, and the 

scheme viscosity is not particularly noticeable in the calculations, then for small-scale 

circulation (the scale of detached buildings). In that case, the scheme viscosity can distort 

the solution too much. This paper is devoted to the question, "how to estimate the scheme 
viscosity of the equations of transfer/conservation of matter and energy?". 

2 Materials and Methods 

Implicit schemes are widely used in computational fluid dynamics. Weather forecasts and 

the configuration of ocean currents are obtained using implicit calculation schemes for the 

equations of motion of a continuous medium and the equations of transfer/conservation of 

matter. But implicit schemes have several disadvantages: 

Firstly, economic calculation algorithms (forward and backward sweeps) have been 
developed only for one-dimensional problems [5,7–12]. 

Secondly, the results are always very smooth due to the strong manifestation of scheme 

viscosity [2]. 

They learned to deal with the first disadvantage. G.I. Marchuk [5,7–9], [13–15]    

developed a method of coordinate-wise splitting of hydrodynamic problems. The three-

dimensional problems were divided into a series of interrelated one-dimensional problems. 

Thanks to these works, mathematical models for predicting aerodynamic phenomena 

worldwide began to develop rapidly. 
All that is known from the literature [2] about the second drawback of implicit schemes 

is that this drawback (computational viscosity) always exists and manifests itself very 

strongly. 

The prevalence of implicit schemes in computational aero and hydrodynamics is due to 

solutions becoming stable. Many scientists have accepted the powerful manifestation of 

artificial viscosity as an inevitable price for the acquired stability in solutions. It is 

generally accepted that this strong manifestation of viscosity in implicit schemes is an 

inevitable evil that cannot be fought and can't be destroyed. The desire to get some 
solutions to complex multidimensional problems forced the computing practitioners to 

agree with the most robust "smoothing" of solutions when using implicit schemes [2,4,6–

9,13,16–18] etc. 

Works combating this "smoothing" phenomenon gave rise to a group of so-called semi-

explicit schemes and schemes of higher-order approximations [2,19–26]. But more success 

has yet to be achieved. The more explicit the scheme was, the more unstable the solutions 

were; the more implicit the scheme was, the more "viscous" the solutions were. 

To estimate the magnitude of the scheme viscosity that arises when calculating the 
transfer/conservation equations, we will conduct a mathematical analysis, numerical 

experiments, and do some heuristic studies. Note that the terms that generate the scheme 
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viscosity are also present in the equations of motion (momentum conservation equations). 

These terms are called not "convective" but inertial terms in these equations. The inertial 

terms generate the scheme viscosity and lead to the "smearing" of the momentum of motion 

over the solution region. This once again emphasizes the practical importance of this study. 

3 Results and Discussion  

To study the manifestation of scheme viscosity in implicit schemes, we consider the 

simplest equation of conservation/transfer of some substance S in one-dimensional space 
[6,12,27–29], extending the obtained conclusions to the equation of conservation of 

momentum. 

 
𝜕𝑆

𝜕𝑡
+

𝜕(𝑉 ∙𝑆)

𝜕𝑥
= 0       (1) 

 

where: 

S is some conservative substance, 

V is speed is assumed to be constant,  
∂ is derivative sign,  

t is time,  

x is spatial coordinate. 

Recall that equation (1) can be written in algebraic form using explicit (2) or implicit (3) 

finite-difference analogs [2,6,19–21] etc. 

 
𝑆𝑜𝑖,𝑗

𝑡+1− 𝑆𝑜𝑖,𝑗
𝑡

∆𝑡
+ 𝑉𝑖,𝑗

𝑡 ∙
𝑆𝑜𝑖,𝑗

𝑡 −𝑆𝑜𝑖−1,𝑗
𝑡

∆𝑥
  = 0 𝑉𝑖,𝑗

𝑡 > 0              (2) 

𝑆𝑜𝑖,𝑗
𝑡+1− 𝑆𝑜𝑖,𝑗

𝑡

∆𝑡
+ 𝑉𝑖,𝑗

𝑡 ∙
𝑆𝑜𝑖,𝑗

𝑡+1−𝑆𝑜𝑖−1,𝑗
𝑡+1

∆𝑥
= 0, 𝑉𝑖,𝑗

𝑡 > 0,                 (3)  

 
The analog scheme in the notation (2) and (3) for the spatial derivative is called the "left 

corner" or the "upstream" scheme. This type of scheme ensures the stability of the solution 

and the adequacy of the operation of the analog scheme for the term containing the spatial 

derivative in the impurity transfer/conservation equation (1). The "left corner" scheme 

should be replaced by the "right corner" scheme if the substance transfer rate becomes a 

negative value [2,6] etc. This replacement guarantees a stable and adequate Eq. (1) solution 

at a negative material transfer rate. In addition, the decision must be conservative. The 

conservativeness of the solution lies in the fact that at each moment, the amount of 

substance in the calculation area is a constant value if there is no inflow or outflow of 
substance from the solution area. In "TIIAME" NRU, such a conservative scheme was 

developed, which exhibits conservatism for any configuration of the velocity fields [30,31]. 

In the case of a constant speed of the substance (1), the new scheme of "TIIAME" NRU is 

identical to the most famous scheme of Courant-Isakson-Ries, which, at a constant value of 

the velocity transfer rate, also coincides with the scheme of Lax Wendroff [2,6,22].  

The conservatism of schemes will be tested in all studies of the manifestation of scheme 

viscosity due to the fundamental importance of this property.  

Algebraic equation (2) is an analog of the differential equation (1), which is convenient 
for mathematical analysis. 

As shown in [12], by identical mathematical transformations, the first differential 

approximation of the difference scheme (2) looks like this: 

 
𝜕𝑆

𝜕𝑡
+  𝑉 ∙  

𝜕𝑆

𝜕𝑥
= (−

𝑉2∙∆t

2
+

𝑉∙∆x

2
) ∙

𝜕2𝑆

𝜕𝑥2
                        (4) 
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From the analysis of equation (4), two important conclusions follow: 

• The value in brackets can be considered as some artificial viscosity that appeared due 

to the representation of the differential equation by finite-difference algebraic analogs on 

the grid function. 

• Equation (4) will have a stable and adequate solution only if the value in brackets is 

not negative. 

The second point in the above conclusions follows the rule - "an evolutionary equation 
with a second spatial derivative is solvable only if the coefficient in front of the second 

spatial derivative to the right of zero is greater than 0". 

It is known and proven by theory and practice that equation (4) has a stable solution 

only if the coefficient before the second derivative is positive [2,4] and many others. This 

coefficient is the scheme viscosity coefficient for the explicit scheme. 

Equations similar to equation (1) describe diffusion propagation of matter or heat 

transfer by heat conduction from hot space spots to colder ones. It is clear that the process 

of collecting heat or matter back to a point from the surrounding space by diffusion is not 
possible. It is not possible either in nature or in the computational process. An attempt to 

calculate such a process always leads to an emergency stop of computer technology. 

That is, in the computational analog (2) of equation (1), some invisible component μa 

appears, as it were, as defined in the notation (4) 

 

𝜇𝑎 =  (
𝑉∙∆x

2
−

𝑉2∙∆t

2
)     (5) 

 

and this component μa must be greater than zero 

 

(
𝑉∙∆x

2
−

𝑉2∙∆t

2
) ≥ 0     (6) 

 
Equation (6) gives the maximum possible time step value that would provide a stable 

solution. 

 

∆t ≤
∆x

𝑉
      (7) 

or 

1 ≤  
∆x

𝑉∙∆t
 ,    𝐾0 =  

𝑉∙∆t

∆x
≤ 1   (8) 

 

where K0 is a parameter with a common name - the Courant-Levy parameter [2,6–8] etc. 

Let's take it out of the bracket 
V∙∆x

2
 in expression (6) as it is usually done [13] and get (9) 

 

𝜇𝑎 =  
𝑉∙∆x

2
∙ (1 −

𝑉∙∆t

∆x
) =  

𝑉∙∆x

2
∙ (1 − 𝐾0) > 0   (9) 

 

From the positivity μa it follows that the limiting value Kmax for the parameter K0, at which 

a stable calculation Kmax=1 is possible. 
Formula (9) reveals to us the dependence of the scheme viscosity on the chosen value 

V∙∆t

∆x
 - the Courant-Levy parameter [6] for the explicit scheme "upstream" [2] etc. 

Let's check the accuracy of formula (8) using a test example. The need for such a check 

is due to the following circumstance. The fact is that when working with approximations of 

differential equations, practical researchers always add words that there is hope for a close 

location of the approximate solution and the solution of the original equation. Confidence 

and hope are not synonymous.  
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In a one-dimensional space, we construct a grid, the nodes of which are 1 meter apart. 

Let's set the movement speed of matter equal to 1 meter per second in each grid node. Let 

us define the substance content everywhere on the spatial axis equal to zero, except for the 

node point with the number 5. At point 5, we set the substance concentration equal to 10 

[
𝑘𝑔

𝑚3]. We will consider the solution to the problem for the 50th second. 

Let us check the operation of formula (9). To do this, we compare two solutions to the 

problem of transfer/conservation of matter (1) obtained from the solution of equation (2) 

using equations (10) and (11), For different values of the Courant parameter K0. 
 

So𝑖
𝑡+1− So𝑖

𝑡

∆t
+ 𝑉𝑖

𝑡 ∙
So𝑖

𝑡−So𝑖−1
𝑡

∆x
= 0,     𝐾0 < 1      (10) 

 

So𝑖
𝑡+1− So𝑖

𝑡

∆t
+ 𝑉𝑖

𝑡 ∙
So𝑖

𝑡−So𝑖−1
𝑡

∆x
= 𝜇𝑠 .

So𝑖
𝑡−2∙So𝑖

𝑡−So𝑖−1
𝑡

 ∆x2
,     𝐾0 = 1  (11) 

 

When solving equation (10), artificial viscosity will manifest. When solving equation (11), 

there will be no artificial viscosity, but there is a real action of viscosity μs, which we will 

introduce into the calculation and determine its numerical value. 

If μs is calculated by the formula (9) as a function of K0, then solutions (10) and (11) will 
have to coincide for any K0 of the interval allowed by the Courant Levy condition - K0<1. 

An example of the coincidence of solutions (10) and (11), after using formula (9), is shown 

in Figure 1. 

 

 

Fig. 1. Example of comparing solution of equations (10) and (11) with Courant number equals 0.01. 
Coefficient μs was selected manually and coincided in value with value calculated by formula (9). 

 

Let us check the assertion about the coincidence of solutions of equations (10) and (11) 
under the condition that formula (9) is applied. To do this, in Figure 2, we will display: 

manually selected values μs and theoretical values of artificial viscosity for speeds of 1 and 

2 meters per second and a set of Courant numbers (0 - 1). 
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Fig. 2. Manually selected values of viscosity (diffusion) ensuring identity of solutions of equations 
(10) and (11). Points - calculation with manual selection of viscosity coefficient μs. Lines are 
theoretical values of viscosity (diffusion) calculated by formula (9) for an explicit "upstream" transfer 
scheme. 

Figure 2 proves the high accuracy of equation (9) for calculating artificial viscosity in 

explicit schemes (2) of the transfer equation (1).  

Now let us determine what the scheme viscosity will be if, instead of the explicit scheme 
(2), the implicit scheme (3) is used to solve equation (1). To evaluate the effect of scheme 

viscosity manifested in implicit schemes, it is no longer enough to evaluate "very viscous 

schemes". We need a calculation formula, and it will be offered.  

The solution to the implicit scheme (3) can be obtained by forward and backward sweeps 

[9,14]. 

 

 

Fig. 3. Comparison of scheme viscosity of explicit and implicit schemes v=1m/s v=2m/s for different 
values of Courant-Levy parameter and two different values of substance transfer rate. 
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As for the case of determining the viscosity of the explicit scheme (10), equation (11) 

was used, in which a value was selected that ensures the equality of solutions, and for the 

case of the implicit scheme (3), equation (11) was used. Through numerous repetitions, 

such a value of viscosity μs in equation (11) was selected such that the solution of equation 

(3) coincided with the solution of equation (11).  

Figure 3 shows the results of these calculations, together with the theoretical values of 

artificial viscosity according to formula (9) for explicit schemes. The formula for the 

scheme (computational) viscosity when using implicit schemes for solving the problem of 
substance transfer (3) can have the form: 
 

𝜇𝑎 =  
𝑉∙∆x

2
∙ (1 +

𝑉∙∆t

∆x
) =  

𝑉∙∆x

2
∙ (1 + 𝐾0)    (12) 

 

Notably, with an increase in the Courant-Levy number, the scheme viscosity increases 

when implicit schemes are used. Moreover, the minimum value of the circuit viscosity of 

implicit circuits is the maximum value of explicit circuits. One can at least try to reduce the 
scheme viscosity with explicit schemes by increasing the Courant-Levy number. In implicit 

schemes, the computational viscosity is an indestructible parasitic property of the 

calculation, and the implicit scheme is always more viscous than the explicit one. The 

implicit scheme does not lose stability for the Courant-Levy parameter and 10 and 100. But 

for large values of the Courant-Levy parameter, the solution becomes so viscous that it 

loses its practical value. 

The following fact is about how harmful the manifestation of circuit viscosity can be. 

The kinematic viscosity of water is 1.7∙ 10−6 m2

s
, and the minimum scheme viscosity when 

solving the problem of impurity transfer (1) using scheme (3) with water velocities 1
m

s
  at a 

grid step of 1 m will be 0.5
m2

𝑠
. In calculations, the calculated viscosity will exceed the real 

viscosity thousands of times. Figure 4 shows the solution of the matter transfer equation (1) 

obtained using the implicit scheme (3) for the Courant-Isakson-Rees pattern for some 

values of the Courant-Levy parameter. We repeat that the restriction on the Courant-Levy 

parameter K0 < 1 is removed. 

 

 

Fig. 4. Comparison of solutions to problem (1) using implicit scheme (3) for series of different values 
of Courant-Levy parameter. 
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Let us carry out a mathematical analysis of the first approximation of implicit schemes for 

the differential equation (1) as it was done for explicit calculation schemes [3]. Mukhin, S.I. 

et al. [3] use the Taylor series expansion to write expressions for a smooth continuous 

function of solutions S(t,x)  to equation (1) on a grid function in the form of equations (13) 

and (14) 

 

𝑆(𝑡 + 1, 𝑥) = 𝑆(𝑡, 𝑥) + ∑
𝛥𝑡𝑙

𝑙!

∞
𝑙=1 ∙  

𝜕𝑙𝑆(𝑡,х)

 (𝜕𝑡)𝑙 
                      (13) 

 

𝑆(𝑡, 𝑥 − 1) = 𝑆(𝑡, 𝑥) + ∑  (−1)𝑙  
𝛥х𝑙

𝑙!

∞
𝑙=1 ∙  

𝜕𝑙𝑆(𝑡,х)

 (𝜕𝑥)𝑙 
          (14) 

 

Note that equation (14) can be written as (15) 

 

𝑆(𝑡, 𝑥) = 𝑆(𝑡 + 1, 𝑥) − ∑
𝛥𝑡𝑙

𝑙!

∞
𝑙=1 ∙  

𝜕𝑙𝑆(𝑡,х)

 (𝜕𝑡)𝑙 
                       (15) 

 
Equation (15) is the result of expanding the function for implicit circuits. 

This means that if we repeat all the rather long actions published in [3], then in the resulting 

formula (9) obtained by the authors, the sign in front of the term containing from Δt "-" to 

"+" will change. 

Instead of formula (9) 

 

𝜇𝑎 =  
𝑉∙∆x

2
∙ (1 −

𝑉∙∆t

∆x
) =  

𝑉∙∆x

2
∙ (1 − 𝐾0)                       (16) 

 

formula (16) will be obtained 

 

𝜇𝑎 =  
𝑉∙∆x

2
∙ (1 +

𝑉∙∆t

∆x
) =  

𝑉∙∆x

2
∙ (1 + 𝐾0)                        (17) 

 

This is proof that the scheme viscosity arising from the use of implicit calculation 

schemes of type (3) for solving equation (1) can be calculated using formula (12). 

Is it possible that formulas (9) and (12) depend on any other parameters besides the 
space step, velocity, and the Courant-Levy number? To answer this question, Sedov's π-

theorem should be applied. The existence of a regularity, which later received the name of 

Sedov's π-theorem, was first announced by Bertrand as early as 1878 [19]. To the level of a 

theorem with variants of use in fluid mechanics, this pattern was developed by Sedov L.I. 

[32].  

The essence of the theorem is as follows. Any pattern in any physical phenomenon is 

determined by the product of the functions of dimensionless invariants, composed of the 

parameters that determine this physical phenomenon.  
Let us compose dimensionless invariants from the dimensional quantities included in 

equation (2) or equation (3), which are identical in the set of parameters.  

In equations (2) or (3), we have the following dimensions in terms: space step ∆x 

→meter, time step ∆t→ sec, 𝑉𝑖,𝑗
𝑡 →

𝑚

𝑠
, viscosity 𝜇𝑎  →  

𝑚2

𝑠
. Viscosity in equations (2) or (3) 

is contained invisibly and appears as a consequence of the calculation in finite differences. 

The value S is, in fact, unique, and it is impossible to compose any dimensionless invariant 
with it. Therefore, we remove variable S from consideration.  

Only the following three dimensionless invariants can be constructed: 

Courant number      𝐾0 →  
𝑉∙∆t

∆x
, 

𝑉∙∆х

 𝜇𝑎
, 

∆х∙∆х

 𝜇𝑎∙∆𝑡
. 

The third invariant is not independent and can be obtained by dividing the second 

invariant by the first. Therefore, the third invariant can be removed from consideration. 
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Since the functions in which this or that invariant participates are not defined, we can 

directly replace the most interesting function for us, containing the most interesting 

invariant for us, with the invariant itself.  

Then, according to the π-theorem, the equality 

 

𝐶𝑜𝑛𝑠𝑡 =
𝑉∙∆х

𝜇𝑎
∙   𝛹(𝐾0)  

 

The value Const is fixed and constant. The graph (3) clearly shows the value Const=2. 

The expression 𝛹(𝐾0) is some function of the Courant-Levy number. The graph (3) clearly 

shows that this is a linear function 𝛹(𝐾0) = 1 + 𝐾0 for the implicit scheme and 𝛹(𝐾0) =
1 − 𝐾0 for the explicit scheme. Hence, as suggested above, the formula for calculating the 
artificial viscosity in the transfer equations when using implicit schemes with high 

probability looks like (12).  

Let us repeat this important result at the end of this article and propose it for the 

application 

 

 𝜇𝑎 =
𝑉∙∆х

2
∙ (1 + 𝐾0)  

 

Using implicit diagrams, the value of schematic viscosity can also be evaluated when 

using implicitly finished schemes to solve the equations of the substance transfer in the 

laws of maintaining a mass and the equations of the preservation of a pulse in the equations 
of movement. 

It should be emphasized that the number of chimes when choosing a step in time in 

implicit schemes ceases to work as a limiting factor. You can choose the number of chimes 

and 2 and 20! With any values, a stable result will be obtained. Based on the formula (17), 

viscosity in the resulting result will be prohibitively high. The usefulness and 

informativeness of this result will be lost. It is enough to look at Figure 4, in which the peak 

of the analytical solution did not even fit together with the numerical decisions received. If 

you change the scale and place the peak of an analytical solution on the schedule, then 
numerical solutions visually merge with the horizontal axis of the coordinates. Therefore, 

using implicit types of schemes in solving the tasks of the movements of the squat layer of 

the atmosphere in conditions of small-scale urban development is not advisable due to the 

loss of information contained in the calculations. 

4 Conclusions 

When using implicit schemes for calculating the equations of preservation of mass and 

momentum: 
• the restriction on the stability of the solution from the Courant-Levy parameter is 

removed, 

• a schematic viscosity arises and manifests itself, which cannot be destroyed in any 

way, 

• the minimum schematic viscosity when using implicit circuits is equal to the 

maximum schematic viscosity when applying obvious schemes for the same tasks, 

• the size of the schematic viscosity is calculated by the formula (17). 
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