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Application of the method of direct mathematical
modeling to diamond-shaped contact lines
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Abstract. The article describes the application of the numerical method to
the investigation of the dynamic interaction of contact lines with current
collectors of electric rolling stock (ERS).

The law of joint movement of the runner and the contact wire shall be
established. If a gap is recorded at any stage, the pressure value is set to zero.
From this point on, the flux and contact wire are modeled independently.
The contact wire shall be touched by the current collector by the clearance
6. As arule, the introduction into contact is accompanied by the introduction
of a current collector into the contact wire, which is characterized by
negative clearance § < 0. To compensate for the introduction at the point of
contact, there must be an additional «pushy force defined by the condition of
zero clearance at the end of the stage.

1 Introduction

The main way of studying the interaction of the contact suspension with current collectors is
currently mathematical modeling. The highest level of detail of the contact suspension is
achieved in models developed using the finite element method (FEM) [1, 2], where the
suspension is represented by a set of interconnected structural elements, and the movement of
each element is described by an ordinary differential equation. Splitting the contact
suspension into discrete elements simplifies calculations, eliminating the need to solve
partial differential equations. At the same time, there is no need to use any conditional
parameters, for instance, the reduced mass of the contact suspension. Sometimes the method
of finite differences [3, 4] is used to reduce partial differental equations to a system of
ordinary differential equations.

2 Objects and methods of research

Spatial diamond-shaped auto-compensated contact lines (SDACL) have proven to be a
design capable of providing stable current transfer to ERS even under the most adverse
climatic conditions. Compared with vertical chain suspension, SDACL offers more
possibilities for optimizing static properties.

A prospective direction of improvement of methods of studying current collectors, using
the FEM principle, is the development of new numerical algorithms on the basis of the
method of direct mathematical modeling (DMM) [5].

Calculation of DMM is a powerful tool that allows obtaining simple calculation relations
directly, without making differential equations.
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3 Results and their discussion

The use of DMM to solve the problems of the dynamics of the contact network gives a wide
range of engineers the opportunity to create mathematical models taking into account the real
characteristics of the elements of the contact suspension: contact wire, bearing cable, strings
and retainers; to study the interact of contact suspension with several current collectors.

Let’s consider the peculiarities of the application of the DMM method to the problems of
interaction of contact suspension with current collectors on the example of the spatial
diamond-shaped auto-compensated contact network SDACL (Fig. 1). A significant
simplification of calculations is achieved by using a flat replacement scheme SDACL, which
consists of a contact wire and a bearing cable connected by elastic elements (Fig. 2). In the
diagram, the 7’and K tension is applied to the suspension wires, equal to the double tension of
the carrier cable and the contact wire respectively. The resilient elements are rigid,
independent of, the amount of force applied to the retainer, which, according to the results of
experiments, is quite reasonable [6-10].
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Fig. 1. Location of SDACL elements in the span

74— = —» T

K -— —» K

Fig. 2. SDACL flat replacement diagram (single suspension span)

The tension of each of the wires will be considered constant, independent of the pressure
of the current collector, and the load from the weight of the contact wires evenly distributed
along the span. We will proceed on the assumption that all forces acting on the contact wire
are known. In this case, the task is to establish the law of oscillation of the contact wire under
the action of several external forces. The full solution to such a problem is given in [5], here
we will briefly consider the starting points and basic principles leading to the calculation
ratios of the DMM method.

Imagine a contact wire with a completely flexible thread suspended on supports (Fig. 3).
Let the suspension points be at the same height level and the distance between the supports is
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L. The thread is characterized by linear density p and tension K.

L

Fig. 3. Elastic thread in original condition

According to the general algorithm of the DMM method, the thread is divided by
cross-sections on the n composite elements. Both elements and sections are assigned serial
numbers. In this case, the number of the left section j must coincide with the number of the
element itself. In particular, the first section (j= /) must coincide with the left bound of the
filament, and the last (j= p+ 1) with the right (Fig. 4, a).

The structural element is conventionally divided into three parts: the inner, which is
attributed to the elastic-inertial properties of the element, and the two non-interferential
boundary regions.

Each modeling step corresponds to a finite time interval A¢, the duration of which is
determined by the expression

Here is Ax = 7% the linear size of the structural element; ¢ —the rate of propagation of

transverse waves.

At the beginning of each time stage, the structural element is in a homogeneous state
characterized by transverse velocity W, and transverse force Q, (Fig. 4, b). At this point,
the fronts of perturbations (Fig. 4, ¢) of transverse velocity W and force @ begin to spread
from the border to the interior of the element. At the moment of time 0,5At, the fronts meet
in the middle of the element, and when t > 0,5A¢t it is established a homogeneous state,
which at the end of the current stage will extend to the entire element.
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Fig. 4. Final structural element in the original undeveloped state (a), in the propagation of perturbations
at the beginning of the current stage (b), in the propagation of perturbations during the time phase (c)

This homogeneous state is characterized by transverse velocity W and transverse force Q

W=W,+AW*r+ AW =W+ +W~ —W, 1)
Q=Qo+AQ"+AQ™ =Q"+Q™ —Qo. 2

The increment of the transverse component of the tension is determined by the known K
and the tension of the angle tangent increment ¢. At small angles ¢, the formula is fair

K (@* = po) = Q* — Qo 3

In the propagation of the fronts of perturbations within the structural element, the law of
maintaining momentum must be observed

Q% = Qo = tpc(W* — Wp) 4)
and the condition of continuity
W =Wy = tc(9* — ¢o). (5)

From expressions (3)-(5) we get
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c= 5 (6)

Formula (6) is known to be a classical expression for the velocity of transverse wave
propagation in a flexible thread.

Using (1), (2), (4), as well as the conditions of equivalence of transverse velocities and
forces on the external boundaries of the structural elements, the recurrent relationships of the
DMM method for the flexible thread are obtained:

1 + _
_ Wj+10+Wj—10+E[Qj+1U_Qj—1U+Pj*o+Pj*o]

W= : ™

-
_ PC[Wj+1o_Wj—1o] +Qj+10+Qj-10+Pj o= Pjxo

Q= 2 ®)

where is P;:ro the force applied to the outer limits of the j-th element (Fig. 4).

Determining the transverse velocities and forces of the boundary elements taking into
account the equality of zero velocities in the sections j=n+1 (W~ =0, Wt =0),
we arrive at the following ratios:

1
Wao—=Wig +E[Q20_Q10+P1+*u]

Wy = &)

2
1 -
Wn—-10+Wno __pc[(Qn—lu_Qnu)_Pn*o]

2
0, = pc[Wao+Wiol 2+on+Qw+P1+0 (11)
Qn — PC[Wn—w+Wn0]—(Qn—1+Qn0)+Pr:0. (12)

2

Expressions (7) - (12) form a complete system of recurrent relationships of the DMM method
for a flexible thread. The simulation is limited to determining the values of the transverse
velocities and forces at the current time stage by substitution in (7) to (12) known external
forces, as well as the parameters of the capital Q, and W, determining the state of each
element at the previous stage.

Figure 5 shows the contact wire profiles obtained by computer simulation. This is the
result of a simulation. Here, a concentrated vertical force of 120 N is applied to the contact
wire in a 25 m span at a speed of 200 km/h (69.44 m/s). Contact wire tension 15 kN, linear
density 1.068 kg/m. The curves t; —t; illustrate the position of the contact wire
respectively at times 0.0644 s, 0.0862 s, and 0.1165 s.

Before meeting the right border, the wavelength of the front is close to straight. The
inclination angle of this line to the x is determined by the ratio of the current collector speed
and the perturbation propagation rate. So, if these speeds were equal, the wave front would be
a line perpendicular to the x.

Based on the data obtained by simulating the variation of the flexible strand under the
action of concentrated force, one of the phenomena observed in practice is explained: It has
been determined that with the increase in the speed of movement of the current collector, the
point of the maximum release of the contact wire shifts in the direction of travel. It is easy to
notice that the trajectory of the point of contact is close to the line until the moment of
meeting with the front of the wave reflected from the right border (the curve t;and t,). At
this point begins a sharp decline of the contact point (curve t;and t3), caused by the
overlap of the reflected wave. Therefore, the higher the velocity, the farther the current
collector moves until the moment of meeting with the front of the reflected wave and the
closer the point of the greatest push to the right border.
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Fig. 5. Flexible thread under movable load

In general, the value of P;—IO equals the sum of the projection forces on the y-axis applied to
the outer limits of the elements. In the above example, Pﬁo determines the amount of

pressure of the current collector on the contact wire. It is known that during the interaction of
the contact suspension with the current collectors, the pressure is not constant and can vary
widely. If during the time interval At between the contact wire and the runner of the current
collector, there is a gap (6 > 0), pressure equals zero, and the suspension makes free
fluctuations. When the flow collector slides along the contact wire (§ = 0), the suspension
oscillations should be considered as forced, caused by the force of the current collector. In
order to determine this force, let’s think of the canopy as a point mass m on which the vertical
force F. Suppose that at the end of the sometimes stage the mass m moved vertically
upwards towards the wire at a speed W,,,. Assuming that during the next time stage, the
mass is in contact with the wire, we get the formula to determine the average, within a stage,
speed
Winy = Wino + 0.5AW,, = W™ = Wit (13)

here W,,is the full-speeded change during the stage.

Since the mass m of at moves in contact with the wire, the average speed W, is equal to
the speed of the boundary of the elements at the point of contact

Wop =W~ = I/V}tl
According to the law of maintaining momentum
At
AWy, =F— (14)

here F = Fy + Fr - the y- axial projection of equivalently applied external forces to the
mass m; Fy = Qj — Q}'_l - the projection oy-axis of the force acting on the mass m of the
wire. The force of the capital Fy; is equal in absolute value and is opposite in direction of the
force of contact pressure.
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Using (4), we get
Qf = Qf-1 = Qjo — Qj-10 — pcl2W)” = (Wjo + Wj_1,)].
Considering (13) and (14), come to the expression

mj

Qjo‘Qj—m—PC[ZWmo—(Wju +Wj—1o)]—FT—m

f;= ™ (15)
m

1+

here m; = pcAt.

The ratios (7)-(12), (15) establish the law of joint movement of the runner and the
contact wire. If a gap isrecorded at any stage, the pressure value is set to zero. From this point
on, the flux and contact wire are modeled independently. The contact wire is touched by a
screw-flow collector and monitored by the amount of delta clearance §. Normally, the
introduction of a current collector into a contact wire, which is characterized by a negative
delta clearance § < 0, is accompanied by an additional "expander" to compensate for the
introduction at the contact point of the force defined by the zero-gap condition at the end of
the step.

4 Conclusions

Fig. 6 shows the profiles of the contact wire interacting with the current collector. It is a
traditional system with two degrees of freedom. The mass of the runner is 16.7 kg, and the
mass of the movable frame system is reduced to the top hinge is 15.8 kg. The rigidity of the
top unit is 6.0 kN/m. The static pressure of 120 N. At the time t = 0, the current collector was
under the left base point (x = 0) and had an initial speed of 200 km/h, which remained
constant throughout the simulation.
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Fig. 6. Spread of disturbances in the contact wire caused by the influence of the current collector

It is obvious that the use of the current collector in the calculation of the model leads to a
significant change in the results compared to the earlier case (Fig. 5). For example, the shape
of the fronts is significantly affected by the mass of the current collector, and the deviation of
the contact pressure from the static effect - on the amount of maximum release of the contact
wire.
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