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Abstract. The research object of this work is a clamped rectangular plate 

made of glass-reinforced plastic. The dynamic problem of stability of the 

plate under rapidly increasing shear load is considered. Within the 

Kirchhoff–Love hypothesis framework, a mathematical model was built in 

a geometrically nonlinear formulation. By the Bubnov–Galerkin method, 

based on a polynomial approximation of the deflection, the problem was 

reduced to solving systems of nonlinear ordinary integro-differential 

equations. With a weakly singular Koltunov–Rzhanitsyn kernel with 

variable coefficients, the resulting system was solved by a numerical 

method based on quadrature formulas. The plate's dynamic behavior was 

investigated depending on the plate's geometric and physic parameters. The 

importance of considering the viscoelastic properties of the material is 
shown. 

1 Introduction 

During the intense development of modern industry, reducing the materials consumption of 

machine structures is one of the main problems of mechanical and civil engineering. To 

save materials, it becomes necessary to manufacture thin-walled structures. The thinner the 

element, and the more flexible it is, the more strongly its susceptibility to buckling and loss 

of stability is manifested. The latter is accompanied by a catastrophic development of 

deformations and, as a rule, the destruction of the structure. From this point of view, in 

producing lightweight, durable, and reliable structures, it is advisable to use materials that 

improve their operating characteristics and, in some cases, create structures that are not 

feasible using traditional materials. Here, structures' calculation procedure and design, 

including consideration of their actual properties, are rather complicated. Today, the most 

pressing issue is the development of effective algorithms for solving nonlinear problems of 

dynamic stability of shells, panels, and plates made of composite materials. 

The buckling analysis on simply supported rectangular plates and stiffened panels is 

given in the article [1]. The thickness of the plates, longitudinal stringers, and sub-stiffeners 

varied. The marine grade steel was used as the construction material. The dependence of 
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the load on the displacement curve and the total energy was measured. The buckling 

analysis results were studied using the finite element method (FE) calculation. 

Paper [2] presents a finite element formulation to study the mechanical buckling of 

stiffened functionally graded material (FGM) plates. The approach is based on a third-order 

shear deformation theory (TSDT) introduced by Guangyu Shi. The material properties of 

the plate were assumed to be varied in the thickness direction by a power law distribution. 

Still, the material of the stiffener was the same as that of one of the bottom surfaces where 

the stiffener was placed. A parametric study was carried out to highlight the effect of 

material distribution, the thickness-to-width ratio, and stiffener parameters on the buckling 

characteristics of the stiffened FGM plates. 

The article [3] investigates the reactions to the buckling of a plate made of functionally 

graded material (FGM) subjected to uniform, linear, and nonlinear loads in the plane. The 

paper proposes new nonlinear models of load in the plane based on trigonometric and 

exponential functions. Dimensionless critical bending loads were estimated using a higher-

order polynomial shear strain theory. To obtain an exact explicit solution, the Navier 

method was used, which provides a minimum numerical error. The equilibrium conditions 

were determined using the principle of virtual displacements, and the material's properties 

were estimated in the direction of thickness using a simple Voigt model or exponential law. 

Since structures made of FG material are often operated at high temperatures, it is 

extremely important to understand the mechanical behavior of these structures, taking into 

account temperature. In [4], a phase field model was used to study the thermal bending of 

plates made of fractured functionally graded material (FGM). In addition, this study 

demonstrates the difference between the reaction of the static stability of the plate to 

thermal load in the case of temperature-dependent mechanical properties of the material 

(TD) and the case of temperature-independent mechanical properties of the material (TID), 

illustrating that the calculation for these two cases will look very distorted. This provides 

scientists with a scientifically sound basis for adopting a more realistic computational 

model. The equations are based on Reddy's third-order shear deformation Plate Theory 

(TSDT). 

The study of the behavior of various rectangular thin isotropic plates having a free edge 

in inelastic bending is devoted to the work [5]. Various combinations of boundary 

conditions are subjected to uniaxial compression in the plane, and each rectangular plate is 

bounded by an unloaded free edge. The characteristic deflection function of each plate is 

formulated using a polynomial function in the form of a Taylor–Maclaurin series. An 

approach based on the plasticity of deformation is used, and the bending load equation is 

modified using the principle of operation method. The buckling coefficients of the plates 

are calculated for different aspect ratios and modules. 

The analysis of many experimental and fundamental studies shows that most composite 

materials have pronounced viscoelastic properties [6]. 

Most researchers who have attacked the class of problems mentioned above have 

considered the solution of problems with such a mathematical statement in an elastic case. 

In these works, only some properties of construction materials were considered: the 

problems were solved either in a linear context or in the elastic formulation. Even if the 

problems were solved using a viscoelastic formulation, in many cases, the viscoelastic 

characteristics of the material were only taken into account in a restricted context. In these 

cases, viscoelastic properties were addressed using the Voight model or exponential 

relaxation kernels. However, mathematical models of problems of viscoelastic systems 

based on these assumptions cannot describe real processes occurring in shell constructions 

in early times [6]. The choice of an exponential kernel in calculations was not incidental. 

The systems of integro-differential equations obtained from the calculations were reduced 

by way of differentiation to the solution of ordinary differential equations, which in most 

E3S Web of Conferences 401, 03009 (2023)

CONMECHYDRO - 2023
https://doi.org/10.1051/e3sconf/202340103009

2



cases used to be solved by the well-known Runge-Kutta's numerical method. To the present 

day, none of the existing methods has allowed one to solve such problems with weakly 

singular kernels of the type of Koltunov's, Rzhanitsyn's, Abel's, Rabotnov's, and others [6]. 

Badalov, Eshmatov, and Yusupov [7] developed the numerical method based on the use 

of quadrature rules, which makes it possible to solve a system of nonlinear integro-

differential equations with weakly singular kernels of the type of Koltunov-Rzhanitsyn's, 

Abel's, and Rabotnov's. Verlan, Abdikarimov, and Eshmatov [8] modified this method. The 

method provides reasonably high accuracy of results, is universal, enables one to solve a 

wide class of dynamic problems in viscoelasticity, and is economical from computer time 

consideration. Based on this method, many numerical results have been obtained by 

Mirsaidov, Abdikarimov, Khodzhaev [9], and other researchers [10-11] that generally agree 

with evaluable experiments' data. 

2 Material and methods 

Consider the case when a rectangular fiberglass plate with sides   and   is subjected to the 

dynamic action of shear forces evenly distributed along its edges. Assume that the shear 

forces increase in proportion to time according to the law  ( )      (   is the loading 

rate) (Fig.1). Problems of this type are found, for example, in ship structures, when 

dynamic loads occur on the vessel's hull, arising from the impact of waves, during the 

passage of an acoustic wave, etc. Similar loads may occur in the aircraft skin panels [12]. 

 

 
Fig. 1. Rectangular plate under shear load 

 

To construct a mathematical model of the dynamic behavior of a plate made of a 

material with anisotropic viscoelastic properties under the influence of various external 

loads, we use the classical Kirchhoff-Love theory. In this case, following [13-19], the stress 

and moment resultants have the form: 
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Here   is the number of plate layers,        are the elastic moduli,     is the shear 

modulus,
 
         are the Poisson ratios,   is the angle characterizing the direction of the 

fibers relative to the axis        is the integral operator with the relaxation kernel  ( )  
The relationship between the strains in the median surface                          and 

displacements       in directions        written by considering the von Kármán type of 

geometric nonlinearity, in the form [12-19]: 
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By substituting (1) and (2) into the equations of motion 
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the system of nonlinear integro-differential equations in partial derivatives is obtained. 

If a dynamic process is considered without considering the propagation of elastic waves, 

then in the first two equations of the set (3) it is possible to discard the inertial terms 

concerning   and   [12-19]. In this case, the solution of the resulting system is sought in 

the form [20]: 
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where    ( )                  are the unknown functions of time; the    and    are 

the roots of the frequency equation: 
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Substituting the approximating functions (4) into the resulting system of equations and 

performing the Bubnov–Galerkin method procedure, a system of nonlinear ordinary partial 

integro-differential equations is obtained. Further, this system is integrated using the 

numerical method based on quadrature formulas [7,8]. 

3 Results and discussion 

The calculations use the simplest and, at the same time, quite common weakly-singular 

Koltunov–Rzhanitsyn kernel having the form  ( )           (     ) as the 

relaxation kernel, where         are the rheological viscosity parameters determined from 

the experiments [6]. Experimental studies have shown that weak singular functions most 

accurately describe the rates of relaxation processes. A detailed description of the numerical 

method based on quadrature that allows solving such systems of equations is given in [7,8]. 

The method allows solving systems of nonlinear integro-differential equations, 

preliminarily transforming singular kernels into regular ones. 

In the calculations, the following parameters for plastic (KAST-V):    = 25.5 GPa, 

   = 14.91 GPa,     = 4.41 GPa,     = 0.2,   = 1900 kg/m
3
 have been used. 

After this, the following parameters of the plate are used in the calculations (unless 

otherwise specified):                                    
Figure 2 illustrates the form of the solution obtained using many terms in the series (4). 

Note that the buckled shape possesses nodal lines (lines of zero deflection) that are not 

parallel to the sides of the plate. Areas with both positive and negative deflections appear 

on the plate. Nodal lines do not occur for uniform compressive loadings of anisotropic 

plates. 

 

 

 

Fig. 2. Buckled shapes 
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When solving problems of stability of the plate under the action of compressive loads, as 

one of the criteria determining the critical time, it was assumed that the sag of the deflection 

should not exceed a value equal to the thickness of the plate [12]. Here, as a criterion 

determining the critical time, we will assume that the difference between the values of 

deflections at the uppermost and lowest point of the deformable plate should not exceed its 

thickness. 

The following graphs correspond to the results obtained for the midpoint of the clamped 

plate. On the graphs,   (meter) is the dimension for the deflection, and   (second) is for 

time. 

Figure 3 shows the effect of the viscoelastic properties of the material on the behavior 

of an anisotropic reinforced plate made of KAST-V. It can be seen from the figure that 

taking into account viscoelastic properties leads to a decrease in the critical time. The 

difference in critical times for elastic and viscoelastic plates reaches more than 15%. This 

result shows the importance of taking into account viscoelastic properties. 

 

 
Fig. 3. Effect of viscoelastic properties on behavior of anisotropic reinforced plate: 

1 is elastic and 2 is viscoelastic cases 

 

An increase in the rigidity of the plate due to an increase in the thickness of the plate leads 

to a proportional increase in the critical time value. (Fig.4) 
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Fig. 4. Dependence of deflection on time for various values of thicknesses of the plate: 

1 is h = 0.3 sm; 2 is h = 0.4 sm; 3 is h = 0.5 sm. 

 

Figure 5 shows similar results for   = 1; 1.2; 1.4. Here   is the ratio of plate edges. Thus, if 

  = 1, then the plate has a square shape. As can be seen from the graph, an increase in one 

of the edges of the plate leads to a shift of the deflection curve to the left (i.e., to a decrease 

in the critical time). 

 
Fig. 5. Dependence of deflection on time for various values of parameter  ( = a/b) 1 is = 1; 2 is 

= 1.2; 3 is = 1.4 

 

The different curves in Fig. 6 correspond to the cases of changing the reflections of the 

midpoint of the reinforced rectangular plate at different loading speeds. As expected, an 

increase in the loading speed leads to an earlier deflection increase. Similar results were 

obtained in the study of the stability of simply-supported plates under the influence of 

external compressive loads. 
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Fig. 6. Dependence of deflection on time for various values of velocities of loading 

1 is P0 = 5 MPa/s; 2 is P0 = 6 MPa/s; 3 is P0 = 7 MPa/s. 

4 Conclusion 

The study of the dynamic stability of viscoelastic anisotropic reinforced plates subjected to 

the dynamic action of shear forces uniformly distributed along their edges shows: 

- the importance of taking into account the viscoelastic properties of the material. The 

results show that the difference in the critical time for solving elastic and viscoelastic 

problems for plates made of KAST-V is more than 15%. 

- changes in the physical and geometric parameters of the plate also significantly affect 

the values of the critical time. This is especially noticeable when considering the 

viscoelastic properties of the construction material. 

The results obtained from the work and their conclusions allow us to accurately predict 

the dynamic behavior of plates made of reinforced plastics. 
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