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Abstract. The problem of vibrations of thin, hereditarily deformable shell 
elements moving in a gas under the action of atmospheric turbulence is 
considered. The work aims to study the flutter phenomenon of aircraft 
elements in a gas flow under the action of loads caused by atmospheric 
turbulence. Assuming that the relationship between stresses and strains for 
the shell material is linear-hereditary, a thin shell is used, which obeys the 

Kirchhoff-Love hypothesis. The aerodynamic force is written according to 
the linearized piston theory. A system of nonlinear integro-differential 
equations in partial derivatives is obtained to describe nonlinear 
oscillations of a thin isotropic viscoelastic shell. The system of nonlinear 
integro-differential equations is solved numerically by the method 
proposed by F. Badalov, which is based on the Bubnov-Galerkin methods, 
finite differences, and power series. When using an exponential kernel, the 
flutter rate increases to approximately 1.5%. Therefore, when using an 

exponential kernel, the flutter velocity of a viscoelastic shell practically 
coincides with the critical flutter velocity for ideally elastic plates. It was 
also found that the critical flutter velocity increases with an increase in the 
number of pinched sides of the shell. 

1 Introduction 

The aircraft, during its flight, is subjected to various external loads. These loads are 

dynamic in nature and are caused by many reasons: excess pressure from the gas side, that 

is, non-conservative aerodynamic pressures of the gas flow (non-conservatism is because 

these pressures depend on the deformation of the structure itself), random effects of 

atmospheric turbulence; exposure to air waves caused by explosions; dynamic loads arising 

from aircraft maneuvers; the tail unit is exposed to the action of a turbulent wake that 
occurs behind the wings, nacelles or other parts of the aircraft [1, 2]. In addition, variable 

forces act on the aircraft during takeoff and landing as it moves along the Earth [3, 4]. 

Under the action of variable loads, the aircraft is deformed and performs forced oscillations 

in the gas flow under the action of atmospheric turbulence [5, 6]. The problem of the 
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strength and reliability of the aircraft as a whole and its individual elements and the 

problem of fatigue of the material and individual structural elements have always been 

important for designers [7,8]. Recently, due to the increase in the weight and size of 

machines and the speed of flight, these problems have become particularly important. 

When solving these problems, an important role is played by the correct consideration of 

the influence of vibrations and deformations of the aircraft, arising under the action of 

external variable loads on the strength of the machine [9,10]. Let's take into account the 

strength, economy, and ease of execution of the main elements of aircraft from a composite 

material [11,12], in addition to taking into account the pronounced rheological and 

hereditary-deformed properties at any temperature of these materials. The aircraft can be 

considered elastic and hereditarily - deformable solid body. When calculating the stress-
strain state of the aircraft, accounting for these properties of the material brings the theory 

of calculation closer to the actual condition of the structure [13,14]. 

This work on studying the phenomenon of flutter of the shells of aircraft elements in the 

gas flow under the action of loads caused by atmospheric turbulence is devoted. 

2 Objects and methods of research 

Let us consider the problem of forced vibrations of hereditarily deformable shell structural 

elements of an aircraft in a gas flow under the influence of atmospheric turbulence. When 

determining the dynamic response of hereditarily deformable systems to the pressure of 

atmospheric turbulence near critical states (divergence, flutter), we consider this pressure as 

a random function of our arguments [15]. Assuming that the dependence between stresses 
and strains for the material of the structure is linearly hereditary, and the forces of 

aerodynamic action from the side of the gas flow, the streamlined shell structure, are 

written according to the linearized piston theory [16], we obtain, to describe the forced 

oscillations of the system (making the usual technical assumptions of thin shell structures) 

the following operator stochastic integro-differential equation (IDE) [17] 
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where ),( txW  and ),( txq are functions of х and time t with scope RtGCRx n  , . At 

a fixed t functions ),( txW  and ),( txq  are random functions of atmospheric turbulence, 

and are considered as elements of Hilbert spaces 
1H  and 

2H , respectively; A, L are 

deterministic, symmetric, and positive-definite linear operators from 
1H  and 

2H . The 

operator A will be called inertial,  the operator L is elastic, and the operator R* is Volterra 

operator with a weakly singular heredity kernel of Abel type.  

 


sin.cos, 0

0

0  n
с

P
B  is unperturbed parameters; 00 ,сP  are pressure and speed of 

sound, respectively;   is gas polytrope index, V is flow rate.  

It is required to find solutions to IDE (1) for random perturbations of atmospheric 

turbulence near critical states (divergence, flutter) under given boundary and initial 

conditions. 

Application of the method of generalized coordinates. As in deterministic problems, 

in ideally elastic systems, the method of generalized coordinates opens the way for efficient 

analytical and numerical solutions of various problems of random oscillations of 
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hereditarily deformed systems. Indeed, to construct an appropriate system of coordinate 

functions, consider the related homogeneous problem. 

02   AL     (2) 

Its own elements ,..., 21   have the meaning of eigenmodes of the corresponding 

elastic system. Eigenvalues ,..., 2

2

2

1   are equal to the squares of the natural 
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The modes of oscillation are pairwise orthogonal with the weight of the operator A and 

with the weight of the operator L, i.e., relations 

0),(),(  kjkj LA    )( kj    (4) 

Any element from the domain of the operator L can be represented as a series 

concerning its own elements  ,..., 21  ; moreover, this series converges at least in the 

norm of the operator L [18]. In particular, if ),( txW  is an element of the corresponding 

phase space, i.e. )(LDW  , with a parametric dependence on time t, then the expansion 

takes place 


k
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Here )(tfk  is time functions (generalized coordinates). 

The listed properties are formulated assuming that the spectrum of the problem (2) is 

discrete. These assumptions are satisfied if 
1L  is a completely continuous operator. For 

elastic shell systems (rods, plates, shells, etc.) of limited dimensions 
1L  is a completely 

continuous operator [18]. Various spectral problems for equation (2), in the case of a one-

dimensional formulation, can be solved by the Koch method in combination with the 

differential sweep method, and in a multidimensional formulation, by the Koch method in 

combination with the variational iteration method, followed by using a modified version of 

the differential sweep method [19]. 

Generalized coordinate ...)2,1)(( кtfk  satisfies the weakly singular IDE 
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In (6), dots denote differentiation concerning time. 

Suppose that  )()(),( tQxqtxq  , where )(tQ is random function of time. Then from 

(7), we have 
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Now the problem is to find a solution to IDE (6) for given initial conditions. 

The following assertion holds: if the weight function )(thk  satisfies a homogeneous 

IDE of the form 

 
i

kkikikkk thRthbVthrth 0)(*)1()()()( 2*    (9) 

under initial conditions 

0)0( kh , 1)0( kh     (10) 

where 

k

i
kiki

q

q
bb *

, 

then the Duhamel integral 

 

t

kkk dQthtf
0

)()()(     (11) 

gives a solution of IDE (6) that satisfies homogeneous initial conditions, i.e. 
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Indeed, differentiating )(tfk  by t and taking into account the double dependence of the 

right side of equality (11) on the variable concerning which differentiation is performed, we 

obtain 
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From the initial conditions (12), we have 
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Substituting relation (11), (13) into (6) and using the easily proven integral identity 
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The resulting equality is satisfied for any )(tQk , if equalities (9) and (10) hold.  

Substituting (11) into (5), we determine the dynamic responses of the hereditarily 

deformable aircraft structural elements in the gas flow to the pressure of atmospheric 

turbulence near critical states (divergences, flutter). 

IDE (9) under initial conditions (10) will be called a system of weakly singular IDEs of 

the weight function (impulse transition function). 

Numerical solution of the IDE of the weight function. In the general case, the exact 
analytical solution of the IDE of the weight function (8) in the presence of a weakly 

singular singularity of the Abel-type heredity kernel presents a significant mathematical 

difficulty. In this regard, we construct approximate solutions of IDE (6) under initial 

conditions (10) as follows: first, we reduce IDE (6) under initial conditions (10) to an 

equivalent integral equation of the form 
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Then, using the substitution 

1

zs  , eliminating the weakly singular features of the 

inner integral and then using the quadrature trapezoid formulas, we obtain the following 

algorithm for finding a numerical solution to the problem: 
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Thus, the proposed algorithm for the numerical solution of IDE (9) is universal in nature 
since it allows one to determine not only the numerical and graphical values of the weight 

function near the critical state but also the critical speed crV  and flutter critical time as 

ideally elastic  0 , and hereditarily deformable formulation of the problem  0 .  
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Determining the critical flight speeds at which the flutter or divergence of an aircraft 

begins is one of the most important tasks in the problems of aero stability. Its solution is 

reduced to studying the oscillatory instability of the unperturbed motion of the aircraft 

based on the developed algorithm (17) and a special algorithm for finding the critical speed 

[21] based on a computational experiment for given geometric and mechanical parameters. 

According to this technique, the loss of dynamic stability is determined from the conditions 

for the existence of undamped harmonic oscillations with a constant increasing amplitude. 

As you know, testing is one of the possible ways to check the accuracy of the 

calculation methodology and the reliability of the study results. For this purpose, we borrow 

from [21] the results of solving several problems related to the classical flutter. 

Table 1 shows the numerical values of the critical flutter velocity for an elastically fixed 
elongated plate without considering the damped terms of the aerodynamic forces for 

various geometric    and mechanical parameters 
12 сс , found according to the exact and 

proposed calculation method. 

Table 1. Values of the critical flutter velocity for an elastically fixed elongated plate without taking 

into account the damped terms of aerodynamic forces for various geometric   and mechanical 

parameters 12 сс , found according to the exact and proposed calculation method 



12 сс  
1 1/2 2/3 3/4 3/2 

½ 
0.288 
(0.29) 

0.5 
(0.5) 

0.421 (0.421) 0.39 (0.39) 0.129 (0.129) 

¾ 
0.324 
(0.34) 

(0.47) 
(0.52) 

0.425 
(0.456) 

0.4 
(0.43) 

0.165 
(0.166) 

 

A comparative analysis of the calculation results in this table shows the reliability and high 

accuracy of the proposed calculation method. The results of the computational experiment 

as ideally elastic, in the case 0 , and in the hereditarily deformed case 

05.0;25.0;1.0    at 
2

1
;2112  сс  shown respectively in Fig. 1 and 

Fig. 2 , in the ideal elastic case ( 17;503.0 00  tttVNN crcrcr
), and in the viscoelastic 

case - 27;35.0  crcr tN . 

Figures 1, 2 show that taking into account the viscoelastic properties of the structural 

material leads to a decrease in the critical velocity and an increase in the critical flutter 

time. Computational experiments have shown that the influence of the damping parameter 

  in the nuclei of heredity on the critical flutter velocity, compared with the viscosity 

parameter   and singularities  , turned out to be insignificant, which once again 

confirms the well-known conclusions - exponential relaxation kernels are unable to fully 

describe the hereditary properties of the construction material. Since the strain rates 

proportional to the exponential kernels of heredity will be finite at the initial moment of 

time, which contradicts the experiment [19, 20] and, as a result, when solving not only the 

flutter problem but any dynamic problem, errors accumulate over time and the result will be 

distorted than the actual process. 
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Fig.1. Results of a computational experiment 
for the ideal elastic case  

( 0 ) ( 17;503.0 00  tttVNN crcrcr
) 

05.0;25.0;1.0   at 

2

1
;2112  сс  

Fig. 2. Results of a computational 
experiment in the viscoelastic case 

27;35.0  crcr tN , at

2

1
;2112  сс  

 

Thus, the studies in this part of the work have once again confirmed that the main 

constitutive relations of viscoelastic bodies, the core of heredity, must contain weakly 

singular features of the Abel type. 

Probabilistic-statistical characteristics of forced random vibrations of hereditarily 

deformable aircraft structural elements. It can be seen from formula (4.27) that with the 

help of the weight function, the explicit form of the solution of IDE (6) in generalized 

coordinates is established, which allows us to determine the mathematical expectation of 
the moment of the input process, correlation functions, spectral densities, i.e., all the 

probabilistic-statistical characteristics of the investigated IDE (6). 

Indeed, the mean value of the generalized coordinates 
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RMS value of generalized coordinates 

  

t t

kkQ ddththKtf
kkk

0 0

212121

2 )()(),()( 
  (20) 

As is known [7], in most cases, the random function )(tQ  for simplicity, it is presented 

in the form 

)()()( ttAtQ      (21) 

where A(t) is deterministic function and )(t  is stationary random function with an 

autocorrelation function )( 21  K . In this case, the reaction of IDU (5) to )(tQ  those 
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will be a non-stationary function. 

Substituting (21) into (16), with ttt  21
, we get 

  

t t

kjkjff ddKAthAthqqtK
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Hence, using the substitution zt  1 , xt  2 , we get 

  

t t

kjkjff dxdzzxKxtAxhztAzhqqtK
kj

0 0
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Now consider the method of numerical integration of the correlation function when the 

weight function kjmthm ,),(   is a solution of the weakly singular IDE (9) under the 

initial conditions (10). The operation of double integration, which must be performed to 

implement formula (24) in practical applications, even in the case of differential equations, 

requires laborious calculations that are not always amenable to quadratures. In the case of 

weakly singular IDEs, this difficulty will increase even more. In this regard, one of the 

possible computational algorithms based on the use of the trapezoid formula, in 

combination with the method of eliminating the weakly singular singularity of integrals and 

IDEs [11], is proposed below to perform double integration in (24), suitable, both for the 

case of differential and weakly singular IDE. The general form of this algorithm is 

 
 


n
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n
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Values jrh  and ksh  are calculated by formulas (7). 

Thus, the proposed algorithm for calculating the double integral of the correlation 

function (23) is very simple, universal, and easily implemented in modern personal 

computers for arbitrary autocorrelation functions of the input process and various 

approximations of autocorrelation functions obtained as a result of processing real 

accelerograms, and arbitrarily changing during deterministic functions A(t). 

As is known [7], the main task of the practical application of the theory of the 

correlation function is, using formulas (5), (25) to calculate the expected service life of a 

structure and develop methods for designing such structures, the probability of failure of 

which during the specified service life will not exceed the specified value. Defining a 

system of correlation functions is only the first step towards solving the problem. True, 

their value makes it easy to find the law of change in time of the mathematical expectation 

and the mean square value of the generalized coordinates. However, this is not enough for 
practical purposes. 

The second step towards solving the problem is to determine the density of generalized 

coordinates with fixed integral parameters, in which the probability )/( RfP k   

exceeding the coordinates kf  during   some dangerous value R at least once. Then, to 
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analyze the damageability of the structure from rare overloads, following [7], we use the 

approximate conditional probability formula 
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or using formula (25) from (26) we have 
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3 Conclusions 

In conclusion, we note that the theoretical position discussed in this article and practical 

methods for studying random oscillations are suitable only for linear hereditarily 

deformable systems. Meanwhile, it is of considerable interest to study the dynamic 

response of nonlinear hereditarily deformable aircraft structural elements to random 

perturbations of atmospheric turbulence near the flutter critical state. 

Thus, after some generalizations, the method described in this paper can be extended to 

nonlinear hereditarily deformable complex systems. 
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