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Abstract. The paper presents deformation and elastoplastic calculation of 
thin–walled rods (pipelines) under spatial – alternating loading taking into 
account damageability of material. On the basis of deformation theory and 
variational principle of Hamilton – Ostrogradsky the system of differential 
equations of motion (equilibrium) under alternating loading is obtained and 
the boundary value problems for structural elements are formulated. The 
algorithms and results of realization of calculation of thin–walled rods 
(pipes) under alternating loading in view of damage accumulation are 
given. Numerical results of displacement and force components depending 

on the number of loading cycles with regard for strain diagrams are given. 
Effects of secondary plastic deformations and elastic unloading on stress–
strain states are shown graphically. 

1 Introduction 

The functioning of most load–bearing elements in thin–walled structures occur against the 

background of materials exceeding elasticity limits. When cyclic loads are applied, this 

leads to a number of additional phenomena, such as the occurrence of secondary plastic 

deformations, changes in deformation diagrams from cycle to cycle, manifestation of cyclic 

hardening –softening properties, accumulation of damage leading to material failure. The 
presence of damage and various types of defects leads to a significant reduction in the 

strength of rods and pipelines, durability of the structure and contributes to its premature 

failure. Failures of pipelines lead to high material costs for elimination of accidents and 

pollution of the environment. Therefore, analysis of causes of damage and destruction of 

structural elements is of great importance.  Investigation of stress – strain state of structural 

elements with damages causes significant difficulties, since in local areas of stress 

concentration considerably exceeds yield strength and calculation is performed in 

elastoplastic domain.   

General formulation of phenomenological approach to description of damage 

accumulation was given by A.A. Ilyushin [1]. The works by V.V. Moskvitinin [2, 3] 

formulated basic equations of alternating plasticity and viscoplasticity with allowance for 
accumulated damage and proved theorems about alternating loading and secondary plastic 

deformations. An effective method of elastic solutions for elastic – plastic problems has 
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been proposed by them. A number of convenient modifications of this method currently 

exist to permit faster convergence of iterative processes. The papers by T. Buriev [4] 

discuss the implementation and construction of an algorithmic system for calculating load – 

bearing elements of structures within and beyond elasticity under alternating loads.  

In [5] modern problems of estimating resistance of materials and structural elements to 

a wide range of damaging factors are considered. The application of equations of state, 

deformation and fracture models under short – and long – term, low – cycle and multi – 

cycle loading is substantiated. A detailed description of cyclic deformation diagrams for 

various structural materials is given in [6] and possible clarifications of diagram 

interpretations in solving cyclic strength problems are shown. 

The paper [7] is devoted to the problem of constructing mathematical models of 
damaged thermoelastically – viscoplastic media and methods for determining "non – 

standard" model constants related to damage parameters and subjected to experimental 

determination. The paper [8] deals with computer simulation of deformation, damage and 

continuum fracture of nonlinear materials and structures.  

In [9] equations of equilibrium are derived and methods for solving elastic, elastoplastic 

and viscoelastoplastic rods are proposed. Numerical research has been done on the mode of 

action of three – layer rods and plates under single and cyclic loads [10, 11]. 

In [12, 13], the parameters characterizing nonlinear elastic, elastoplastic and 

viscoplastic properties of interaction of underground pipeline with the ground are 

determined on the basis of experimental results. Local laws of interaction of extended 

underground structures with soils of disturbed and undisturbed structure were constructed 

[14]. The problem of ensuring low–cycle strength and reliability of trunk pipelines is a 
multifaceted problem. One of the main directions is development of strength calculations 

and analysis of pipeline stresses with regard to physical and geometrical nonlinearities [15–

18]. 

It follows from the brief review that the most important problems in this field are to 

develop deformation models of thin–walled structure elements, to improve the method of 

calculation and analysis of the mode of deformation under alternating loads taking into 

account the damaging properties of materials. Calculation models on the basis of 

deformation theory and Hamilton – Ostrogradsky variation principle and derivation of 

differential equations of motion (equilibrium) under spatially alternating loading are 

considered. 

2 Objects and methods of research 

It follows from the brief review that the most important tasks in this direction are to 

develop deformation models of thin–walled structure elements, to improve the method of 

calculation and analysis of the mode of deformation under alternating loads taking into 

account the damageability of materials. The aim is to develop models on the basis of 

deformation theory and Hamilton – Ostrogradsky variational principle, to derive system of 

differential equations of motion (equilibrium) under space – variable loads, to formulate 

boundary value problems and to apply finite difference method.  

2.1 Problem statement and deformation of thin–walled rods (pipelines) by 
refined theories under initial loading 

1) Firstly, the problem statement and the deformation of thin – walled rods (pipelines) 

according to refined theories under initial loading are given. Let's give the problem 

statement and the scheme of realization of calculation of thin – walled rods under space – 

variable loading from the initial state on the basis of small elastic – plastic deformations 
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theory of A.A. Ilyushin [1] and the refined theory of rods proposed by V.Z. Vlasov, G.Yu.  

It is well known that under spatial loading, i.e. under combined longitudinal, transverse 

and torsional forces, the distribution laws of motions, deformations and stresses in rod 

sections are complex, so the refined theory is based on a number of static hypotheses [20]. 

Consider a thin  – walled rod of arbitrary cross–section under the action of external 

forces. The OX axis is directed along the length of the rod and the OZ and OY axes are 

directed along the cross – section. The distribution law of the external load is shown in 

Fig.1.  

The displacements of the centre line of the rod under initial loading are denoted by iu   , 

the strain and stress components by .',' ijije   

The displacements of the points of a rod under the combined action of longitudinal, 

transverse and torsional forces can be represented in the following form [20]: 
 

,,, 322211211  ywuzvuaazyuu            (1) 

 

where wu ,,   – displacement components under first loading; ,
1 2  – section 

angles under pure bending; ,
1 2  – transverse shear angles;  – torsion angle;

1  – shear 

twist; φ – Saint – Wenans torsion function. 

According to the Cauchy formula, taking into account (1), determine the deformation 

components: 
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According to Ilyushin's theory of small elastic – plastic deformations, the stress 

components are related through deformation as follows: 

 

;)1(,)1(,)1(3 121213131111 eGeGeG                (3) 

 

In linear hardening 

 

{

0,    𝑎𝑡 𝜀𝑢 ≤ 𝜀𝑠   

𝜆𝑛 [1 −
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𝜀𝑢

]
, 𝑎𝑡 𝜀𝑢 > 𝜀𝑠 

 

To derive the equations of motion of rods (pipelines) under spatial loading taking into 

account elastic – plastic deformations, we use the Hamilton – Ostrogradsky variational 

principle [20]:  

 

.0)( 
t

dtАПТ     (4) 
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First determine the variations in kinetic energy, using the ratio 
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By performing integration operations piecemeal, we obtain 
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In relation (6) we denote the first and second terms by I1, I2 and rewrite them as follows: 
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Now substitute the displacement expressions (1) with the variation signs (7): 
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Open the brackets and perform integration operations on the bar section, introducing the 

following notations: 
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Let's write the integral I1 with regard to the notations as follows: 
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Similarly determine the second part of the kinetic equation (8), that is, the expression of 

the integral I2 
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Given the expressions of the integrals I1 and I2, of the variation of kinetic energy (6) we 
write in vector form 
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where  
1 2 1 2

, , , , , , , ,Y u w        is a displacement vector; A
~

 is a ninth–

order matrix; E is a unit matrix. 

The variation of the potential energy of the rod in this formulation is 
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Let's substitute the deformation expression (2) into (13): 
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Let us transform the variation of potential energy (11). To do this, open the brackets 

under the variation sign and select the integral over the rod cross section. After some 

calculations and notations from (11) we have: 
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The following notations are introduced here: 
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Given relations (3) and notation (13), the expressions for the internal forces and 

moments, e.g. xN  and
2aM  , can be represented as follows 
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Integrals
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Let's substitute expressions of internal forces and moments (14) into variations of 

potential energy (12). Introducing some notations the variations of potential energy will be 

presented in vector form 
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Consider variations in the work of external forces: 
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where pi – bulk forces at initial loading; qi – surface forces; fi  – end forces. 
To the relation (16) we substitute the displacement expressions (1). Open the brackets 

and integrate over the cross – sections of the rod: 
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Similarly, surface and end loads are defined, e.g. ., Г
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In the case of considering the force of interaction with the medium qi
(n) – surface forces; 

fi(n) – torsional forces, taken as follows [12,13]: 
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– components of the spatial seismic movement of the ground along the coordinate axes and 

determined by analogy (1): 
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According to (1) and (19), the expressions qi, fi will take the form, for example, 
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The interaction law and non–linear coefficients determined experimentally with regard 

to the accumulation of damage in the ground should be further clarified. 

Taking into account the introduced notations, the variations of the work of external 

forces will be presented in vector form: 
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Substituting the vector expressions of variation of kinetic (9), potential (15) energies 
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From this variational equation we obtain the following boundary value problem: 
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Here the quadratic matrices of order nine A, B, C, D, the vectors of external forces of 

order nine
нQ  and

грQ  and the coefficients have the following form: 
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Given (14) from the variation equation (21), we have the following system of 

differential equations of rod equilibrium at alternating loads with boundary conditions in 

vector form: 

 

        .)(Пплупплупплупплуп QYDD
x
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x

Y
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x
























  (23) 

 

Boundary conditions: 

     .0)( 





Г

YQYBYBB
x

Y
АA Гплоплупплуп                      (24) 

 

Here Y is the desired ninth – order function. Expressions of internal forces and 

moments in vector form can be represented as 
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                             (25) 

 

where P  is a twelfth – order function vector  

 

 .,,,,,,,,,,,
2121 21  MQQQMQMMMMMNP aaxaazyx

 
 

The matrices
плупплуп BBAA

~
,

~
,

~
,

~
 of the twelfth–order square matrix and the elements 

are described as follows: 

 

,
~

;~;~;~,~
4,,126,,115,,10 ijijssssssijij bb   ba    ba     ba    aa 

 

;
~

;
~

;
~

4,,126,,11,2,10 rrrrsr db  db  db  );6,5,4,3,2;9,8,7;9,...2,1,(  rsji
 . 

 
The finite difference method and the Ilyushin elastic solution method are used to solve 

the boundary value problem. In the process of their approximation a central difference 

scheme of the second order of accuracy is used [21,22]. The application diagram for the 

external load distribution is shown in fig. 1. 
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Fig 1. Diagram of external load distribution application 

 
Vector equation (23) after applying the differences of the scheme takes the form: 
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To solve the formulated algebraic equations (26) with appropriate boundary conditions, 

the Godunov's run method [4, 21, 23] is used, using the following recurrence formula: 

 

;1 iiii VV    1,...,1 Ni          (27) 

Here  );()(;)( 1

1

1

1

1 FCCBACB iiiiiiiiiii  







  .1,...,2,1  Ni  

In order to implement the above algorithm, a modified complex program in an object–

oriented language has been written [23].  

2) Construction of methodology for problem solution under spatially variable loading of 

rods (pipes) with allowance for damage accumulation. Let us now consider the 

construction of a solution for any spatially – variable n – th loading of an elastic – plastic 

rod (pipe) taking into account the accumulation of damageability. Suppose that after (m–1) 

semicycle of loading, starting from the moment 1mt , the instantaneous unloading takes 

place and a new loading is performed by the forces of the opposite sign. These forces will 

create the displacement field 
)(n

iu , deformation 
)(n

ij  and stresses 
)(n

ij . 

Following the theory of V.V. Moskvitin [2], let us introduce differences of the 

following kind 
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The displacements of the points of the rod under alternating loading, by analogy with 

(1), will be represented as  
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where 
)()()( ,, nnn wu   – displacement components under n–load; ,
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n )(

2

n  – section 

angles under pure bending; ,
)(

1

n )(

2

n  – shear angles;
)(n  – torsion angle;

)(

1

n  – shear 

twist under n – load; φ – Saint –Wenans torsion function. 

The strain components, according to (2), are determined by the Cauchy formula: 
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The physical equations of state for stresses and strains marked with a line are assumed 

to be of the type (3):  

(a) When using the Moskvitin model, taking into account the damageability of the material 
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In the case of linear strengthening, the plasticity function is represented as 
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In the case of the generalised Mazing principle
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–Schneiderovich deformation diagrams 
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nn g1  where ng  is 

determined experimentally. When damage accumulation is taken into account [2]: 
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and the damage function  is determined from the kinetic equation 
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provided η(0)=0, η(λN )=1, where N is the number of half–cycles before reaching the limit 

state (failure). 

b) using the Buriev model in current coordinates, taking into account variable loading: 
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By deducing the equation of motion (equilibrium) for quantities with a line, we obtain a 

system of differential equations with appropriate boundary and initial conditions, similar in 

form to (21) and (22): 
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Here the quadratic matrices of order nine A, B, C, D, the vectors of external forces of 

order nine 
нQ  and 

грQ  and the coefficients have the following form: 
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In particular, from (34) and (35) we have the following system of differential equations 

of equilibrium of a rod (pipeline) under space – variable loads with boundary conditions in 

vector form (in current values): 
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Boundary conditions: 
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Here Y(n) are the desired vectors of the ninth – order function in the current coordinates.  

Expressions of internal forces and moments in vector form can be represented as 
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where P(n)  is a twelfth – order function vector 
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The matrices
)()( ~

,
~

,
~

,
~ nплупnплуп BBAA  of the twelfth–order square matrix and the 

elements are described as follows: 
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The finite difference method [21] and modifications of the Ilyushin elastic solution 

method [4] are used to solve the boundary value problem. During their approximation a 

central difference scheme of the second order of accuracy is used. 

The vector equation (36) after applying the differences of the scheme takes the form: 
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To solve the formulated algebraic equations (30) with the corresponding boundary 

conditions, a run–time method is used using the following recurrence formula: 
 

;1 iiii VV   
     .1,...,1 Ni       (40) 

 

Here  );()(;)( 1

1

1

1

1 FCCBACB iiiiiiiiiii  







     .1,...,2,1  Ni  

3 Results and discussion 

First, let us consider the results of calculation of thin – walled rods of rectangular cross–

section, buttressed at the ends under repeated – variable loading according to the 

generalized principle of Masing – Moskvitin [21-23]. We give results of calculation of thin 
– walled bars of rectangular cross – section, pinched at the ends under repeated alternating 

loading. The problem is solved with the following input data: geometrical and mechanical 

characteristics of the rod: 
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Table 1 shows the maximum values of displacement vector 
)(n

iV


 along the length of the 

rod under cyclic loading ( n =1, 2, 3, 4, 5) according to the generalized principle of Masing 

–Moskvitin for different materials (B – 96, D –16T and St TS).  

The variable loading theorem was used to determine the true values of the calculated 

values. The condition for the occurrence of secondary, tertiary, etc. plastic regions is 

,)(

sn

n

u    where n  is the scale factor. 

Table 1. Maximum displacement vector values 

Displacement 

vector ( )(n

iV


) 

Number 
of load  

( n ) 

Cyclically hardening 
Cyclically 

unstrengthening 

В-96 

Q =2.08; ᴂ =0.047 

D-16Т 

Q =2.02; ᴂ=0.03 

St TS  

Q =1.93; ᴂ =0.011 

1 2 3 4 5 

)5.0()1(W  1 -0.27217078 -0.27217078 -0.27217078 

)5.0()(nW  

2 0.54432625 0.54433769 0.54435589 

3 -0.54431336 -0.54432956 -0.54435274 

4 0.54430573 0.54432480 0.54435092 

5 -0.54430034 -0.54432138 -0.54434963 
(5) (0.5)W  -0.27215250 -0.27215924 -0.27216635 

)2.0(
)(

1

n
  1 -0.82530072 -0.82530072 -0.82530072 

( )

1 (0.2)n  

2 1.65055491 1.65058966 1.65064538 

3 -1.65051591 -1.65056491 -1.65063576 

4 1.65049275 1.65055051 1.65063016 

5 -1.65047651 -1.65054020 -1.65062621 
(5)

1 (0.2)  -0.82524549 -0.82526567 -0.82528715 

)1.0(
)(

1

n
  1 -0.01985111 -0.01985111 -0.01985111 

( )

1 (0.1)n  

2 0.03970113 0.03970194 0.03970327 

3 -0.03970023 -0.03970136 -0.03970304 

4 0.03969970 0.03970103 0.03970291 

5 -0.03969933 -0.03970079 -0.03970282 
(5)

1 (0.1)  -0.01984984 -0.01985029 -0.01985079 

)5.0()(nV  1 -0.25519159 -0.25519159 -0.25519159 

( ) (0.5)nV  

2 0.51036890 0.51037953 0.51039654 

3 -0.51035692 -0.51037199 -0.51039365 

4 0.51034984 0.51036755 0.51039197 

5 -0.51034482 -0.51036438 -0.51039079 
(5) (0.5)V  -0.25517460 -0.25518087 -0.25518752 
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The variable loading theorem was used to determine the true values of the calculated 

values. It should be noted that the values of the calculated values obtained using the 

variable loading theorem and the relations linking the stress and strain components in the 

current coordinates using the generalised Masing principle coincide. 

As a second example, the calculation of thin – walled rods of rectangular cross – section 

clamped at the ends under alternating loading with allowance for damage accumulation is 

performed. The problem is solved with the following initial data: material constants of the 

kinetic damage equation: 41.2 10 ;A   5;   0.8;  1=0.97; 31.4 10 ;B  

=0.0015.s  Calculation results are given (y=0; z=𝑏0) at cross – sectional points of the rod; 

0.0x  ; 0.2x  ; 0.5x  under cyclic loading. Table 2 shows the kinetics of change in 

ductility function
( )n and damageability ( )n , as well as strain intensity  ( )n

u   and 

stresses  ( )n

u   as a function of cyclic loading. 

Table 2. Influence of damageability on plasticity parameters 

n  x  ( )n  
( ) ( )n   

2 ( )10 n   2 ( )10 n

u    2 ( )10 n

u 
 

1n   

0.0 0.8677 0.8677 0.0000 1.7333 4.7733 

0.2 0.7422 0.7422 0.0000 0.6859 3.7259 

0.5 0.7160 0.7160 0.0000 0.6091 3.6491 

2n   

0.0 0.7914 0.7881 0.0445 1.7340 7.7228 

0.2 0.5492 0.5409 0.0256 0.6862 6.6750 

0.5 0.4987 0.4893 0.0231 0.6094 6.5982 

5n   
0.0 0.7889 0.8021 1.8118 1.7334 7.1994 

0.2 0.5429 0.5765 1.2964 0.6860 6.1520 

0.5 0.4916 0.5294 1.2193 0.6092 6.0752 

6n   

0.0 0.7885 0.8066 2.2884 1.7341 7.0361 

0.2 0.5420 0.5878 1.6284 0.6862 5.9883 

0.5 0.4906 0.5422 1.5302 0.6094 5.9115 

9n   

0.0 0.7876 0.8191 3.4466 1.7335 6.5727 

0.2 0.5398 0.6193 2.4125 0.6860 5.5252 

0.5 0.4881 0.5776 2.2606 0.6092 5.4484 

10n   
0.0 0.7875 0.8231 3.7556 1.7341 6.4282 

0.2 0.5394 0.6293 2.6155 0.6862 5.3803 

0.5 0.4876 0.5889 2.4487 0.6094 5.3035 

 

Figure 2 shows the calculated values of )(nW  and 
)(

1

n  obtained considering the secondary 

plastic deformations and elastic unloading. Note that the residual calculated values differ 

significantly from the values calculated from the elastic unloading theorem. 

 

Fig. 2. Determination of residual displacement vector values
)(kW  and 

)(

1

k  
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For different load intensities ( 1,1.5, 2  ) the variations of displacements )(nW , )(

1

n

and moments 
)(n

yM , 
)(n

zM  along the length of the rod are shown in Fig. 3 and 4. 

 

  

Fig. 3. Displacement variations along the length of the rod 

 

  

Fig. 4. Changes of moments along the length of the rod 

 

The analysis of numerical experiment shows that the values of plasticity function and 

damage zone change with increasing number of loading cycles. This, in turn, affects the 

kinetics of displacements, forces and moments under alternating loading of elastoplastic 

structural elements.  

4 Conclusions 

A system of differential equations of motion (equilibrium) for thin–walled rods and 

pipelines is formulated and on the basis of variational principle the boundary problems 

under spatially variable loading are generated. The kinetics of stress – strain state of 

structural elements under alternating loading with consideration of generalized Mazing's 

principle and damageability of material is investigated. Influence of cyclic diagrams of 

deformation, secondary plastic deformations and elastic unloading on calculated values is 

also shown. 

This work was financially supported by the International Foundation for Basic 

Research, BRFFR (Project No. IL – 4821091577). 

References 

1. Ilyushin, A. A. Plastic. Logos. (2004). 

2. Moskvitin V. V. Resistance of Viscoelastic Materials. Moscow (2019). 

3. Moskvitin V.V. Cyclic loading of structural elements. Moscow (2019). 

4. Buriev T. Algorithmization of calculation of load–bearing elements of thin – walled 

structures. Tashkent (1986). 

E3S Web of Conferences 401, 03033 (2023)

CONMECHYDRO - 2023
https://doi.org/10.1051/e3sconf/202340103033

18



5. Troshchenko V.T., Lebedev A.A. et al. Mechanical Behaviour of Materials under 

Various Types of Loading. Kiev, (2000). 

6. Gusenkov A.P., Moskvitin G.V., Khoroshilov V.N. Low cycle strength of shell 

structures. Moscow: Nauka, (1989). 

7. Kiselev A.B. Models of Irreversible Dynamic Deformation and Micro – destruction of 

Damaged Medium. Inelasticity and Inelasticity. Moscow State University, pp. 381–

383. (2001). 

8. Kukudzhanov V.N. Computer Simulation of Deformation, Damageability and Fracture 

of Inelastic Materials and Constructions. Moscow (2008). 

9. Starovoitov E.I., Yarovaya A.V. The Viscoelastic–Plastic Three – Layered Rod under 

Thermo–Force Loads. MTT. Izv. RAN. № 3. pp.109-116. (1998). 

10. Starovoitov E.I., Leonenko D.V., Abdusattarov A. Bending of three–layer plate in the 

temperature field of alternating ring load. Mechanics of composite materials and 

structures. 28 (3). pp.339 - 358. (2022). 

11. Carrera E., Fazzolari F.A., Cinefra M. Thermal Stress Analysis of Composite Beams, 

Plates and Shells: Computational Modelling and Applications. Academic Press, (2016). 

12. Rashidov T.R., Yuldashev T., Matkarimov A.Kh. Models of seismodynamics of 

underground structures under spatial loading. Vestnik, № 1. pp. 66-74. (2006). 

13. Sultanov K.S. Wave Theory of Seismic Stability of Underground Structures. (2016). 

14. Aleshin V.V. Numerical analysis of strength of underground pipelines. Moscow: 

Unitorial URSS. (2003). 

15. Zorin N.E. Experimental estimation of serviceability of pipes of main gas pipelines 

under cyclic loading: Moscow (2010). 

16. Aynbinder A.B., Kamerstein A.G. Calculation of main pipelines for strength and 

stability. Moscow (1982). 

17. Abdusattarov, A., Abdukadirov, F., & Ruziyeva, N. Formation of a design model and 

analysis of the stress-strain state of structural elements under alternating loading. 

InterConf, 804-813. (2022). 

18. Samarsky A.A., Mikhailov A.P. Mathematical Modelling: Ideas. Methods. Examples. 

Moscow Nauka, (2001). 

19. Karpov, V. V., & Maslennikov, A. M. Methods for solving non-linear tasks for 

calculating construction structures. World Applied Sciences Journal, 23(13), 178. 

(2013). 

20. Abdusattarov A., Ruzieva N.B., Sabirov N.H. Calculation program for nonlinear 

deformation of elements of underground structures such as cylindrical shells under 

repeated static loading. Agency for Intellectual Property of the Republic of Uzbekistan, 

Certificate №.DGU 15398, 12.03.2022. 

21. Abdusattarov A., Ruzieva N.B. Deformation Models for Cylindrical Shell – Type Main 

Pipelines. Problems of Safety in Transport. Materials of XI International Scientific and 

Practical Conference. Gomel, BelGUT. 2021, P.2 P.113 –114.  

22. Sabirov, N., Ruzieva, N., Abdusattarov, A. Mathematical Models of Pipeline 

Deformation Under Repeated – Variable Loading Taking into Account Damageability. 

AIP Conference Proceedings Vol. 2637, p. 030014 (2022). 

23. Abdusattarov A., Ruzieva N., Sabirov, N., Abdukadirov F. Mathematical Models of 

Deformation of Underground Pipelines Interacting with the Ground under Spatial - 

Variable Loading. AIP Conference Proceedings, Vol. 2612, p.040015 (2023).  

E3S Web of Conferences 401, 03033 (2023)

CONMECHYDRO - 2023
https://doi.org/10.1051/e3sconf/202340103033

19


