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Deformation and damage capacity of thin—
walled rods and tubular conduits under
alternating loading

Abdusamat Abdusattarov”, Nodira Ruzieva, and Farxod Abdukadirov
Tashkent State Transport University, Tashkent, Uzbekistan

Abstract. The paper presents deformation and elastoplastic calculation of
thin—walled rods (pipelines) under spatial — alternating loading taking into
account damageability of material. On the basis of deformation theory and
variational principle of Hamilton — Ostrogradsky the system of differential
equations of motion (equilibrium) under alternating loading is obtained and
the boundary value problems for structural elements are formulated. The
algorithms and results of realization of calculation of thin—walled rods
(pipes) under alternating loading in view of damage accumulation are
given. Numerical results of displacement and force components depending
on the number of loading cycles with regard for strain diagrams are given.
Effects of secondary plastic deformations and elastic unloading on stress—
strain states are shown graphically.

1 Introduction

The functioning of most load—bearing elements in thin—walled structures occur against the
background of materials exceeding elasticity limits. When cyclic loads are applied, this
leads to a number of additional phenomena, such as the occurrence of secondary plastic
deformations, changes in deformation diagrams from cycle to cycle, manifestation of cyclic
hardening —softening properties, accumulation of damage leading to material failure. The
presence of damage and various types of defects leads to a significant reduction in the
strength of rods and pipelines, durability of the structure and contributes to its premature
failure. Failures of pipelines lead to high material costs for elimination of accidents and
pollution of the environment. Therefore, analysis of causes of damage and destruction of
structural elements is of great importance. Investigation of stress — strain state of structural
elements with damages causes significant difficulties, since in local areas of stress
concentration considerably exceeds yield strength and calculation is performed in
elastoplastic domain.

General formulation of phenomenological approach to description of damage
accumulation was given by A.A. Ilyushin [1]. The works by V.V. Moskvitinin [2, 3]
formulated basic equations of alternating plasticity and viscoplasticity with allowance for
accumulated damage and proved theorems about alternating loading and secondary plastic
deformations. An effective method of elastic solutions for elastic — plastic problems has
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been proposed by them. A number of convenient modifications of this method currently
exist to permit faster convergence of iterative processes. The papers by T. Buriev [4]
discuss the implementation and construction of an algorithmic system for calculating load —
bearing elements of structures within and beyond elasticity under alternating loads.

In [5] modern problems of estimating resistance of materials and structural elements to
a wide range of damaging factors are considered. The application of equations of state,
deformation and fracture models under short — and long — term, low — cycle and multi —
cycle loading is substantiated. A detailed description of cyclic deformation diagrams for
various structural materials is given in [6] and possible clarifications of diagram
interpretations in solving cyclic strength problems are shown.

The paper [7] is devoted to the problem of constructing mathematical models of
damaged thermoelastically — viscoplastic media and methods for determining "non —
standard" model constants related to damage parameters and subjected to experimental
determination. The paper [8] deals with computer simulation of deformation, damage and
continuum fracture of nonlinear materials and structures.

In [9] equations of equilibrium are derived and methods for solving elastic, elastoplastic
and viscoelastoplastic rods are proposed. Numerical research has been done on the mode of
action of three — layer rods and plates under single and cyclic loads [10, 11].

In [12, 13], the parameters characterizing nonlinear elastic, elastoplastic and
viscoplastic properties of interaction of underground pipeline with the ground are
determined on the basis of experimental results. Local laws of interaction of extended
underground structures with soils of disturbed and undisturbed structure were constructed
[14]. The problem of ensuring low—cycle strength and reliability of trunk pipelines is a
multifaceted problem. One of the main directions is development of strength calculations
and analysis of pipeline stresses with regard to physical and geometrical nonlinearities [15—
18].

It follows from the brief review that the most important problems in this field are to
develop deformation models of thin—walled structure elements, to improve the method of
calculation and analysis of the mode of deformation under alternating loads taking into
account the damaging properties of materials. Calculation models on the basis of
deformation theory and Hamilton — Ostrogradsky variation principle and derivation of
differential equations of motion (equilibrium) under spatially alternating loading are
considered.

2 Objects and methods of research

It follows from the brief review that the most important tasks in this direction are to
develop deformation models of thin—walled structure elements, to improve the method of
calculation and analysis of the mode of deformation under alternating loads taking into
account the damageability of materials. The aim is to develop models on the basis of
deformation theory and Hamilton — Ostrogradsky variational principle, to derive system of
differential equations of motion (equilibrium) under space — variable loads, to formulate
boundary value problems and to apply finite difference method.

2.1 Problem statement and deformation of thin—walled rods (pipelines) by
refined theories under initial loading

1) Firstly, the problem statement and the deformation of thin — walled rods (pipelines)
according to refined theories under initial loading are given. Let's give the problem
statement and the scheme of realization of calculation of thin — walled rods under space —
variable loading from the initial state on the basis of small elastic — plastic deformations
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theory of A.A. Ilyushin [1] and the refined theory of rods proposed by V.Z. Vlasov, G.Yu.
It is well known that under spatial loading, i.e. under combined longitudinal, transverse
and torsional forces, the distribution laws of motions, deformations and stresses in rod
sections are complex, so the refined theory is based on a number of static hypotheses [20].
Consider a thin — walled rod of arbitrary cross—section under the action of external
forces. The OX axis is directed along the length of the rod and the OZ and OY axes are
directed along the cross — section. The distribution law of the external load is shown in
Fig.1.
The displacements of the centre line of the rod under initial loading are denoted by % ; ,
1
ij>9
The displacements of the points of a rod under the combined action of longitudinal,
transverse and torsional forces can be represented in the following form [20]:

the strain and stress components by €'

u, =u—yo, —zo, +ev+a,p +a,p,, u,=v—z0, u,=w+y0, (1)

whereu, vV, W — displacement components under first loading; ,, &, — section

angles under pure bending; , 5, 3, — transverse shear angles; @ — torsion angle; v, — shear

twist; ¢ — Saint — Wenans torsion function.
According to the Cauchy formula, taking into account (1), determine the deformation
components:

, o da_ oa
" ox y&x ox

+—v+—‘ﬂ1+%ﬁz, @)

9B, op,

ov
+o(y,z )a +a,(y,z)— +a2(y,2)6—x;

€, =_"Z & 8§0 +_1ﬁ1 6612 — B,
ox  Ox 8y oy oy

According to Ilyushin's theory of small elastic — plastic deformations, the stress
components are related through deformation as follows:

, =3G(1-w)e,, o,;,=G1-w)e,, oc,=G1-we,; (3)
In linear hardening
0, ate, <&
B

[ Ss] ,at g, > &
nl|l——
u

To derive the equations of motion of rods (pipelines) under spatial loading taking into
account elastic — plastic deformations, we use the Hamilton — Ostrogradsky variational
principle [20]:

5_[(T—H+A)dt=0. @)
t
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First determine the variations in kinetic energy, using the ratio

5det_jIZ[a” % v o

By performing integration operations piecemeal, we obtain

5ITdZ—JpZ [a” &4}'\ —HpZ F a }dvdt ©

In relation (6) we denote the first and second terms by /;, I» and rewrite them as follows:

ou, ou ou
=|p| —L-Ou, +—=u, +—=du, dV 7
: JV"O{ o a0 ot 3} ‘t @
o’u o’u 82u
I,= p{ Lo Su, +—2du, : &3} dvdt. ®)
” o’ ot’ B

Now substitute the displacement expressions (1) with the variation signs (7):

1, _.[’0|: ot Ou—ya, —za, +ov+a,f +a,p,)+
+8L;§(v—z(9)+aait3§(w+l9)]dV‘

Open the brackets and perform integration operations on the bar section, introducing the

following notations:

iszF;, J;y(de:SW ide:Sz’ izszSy, jj;a]szSal, iazdF:Saz,
[ydF=J., [22dF=J,, [(y’+z)dF=J, [ydF=J_, [¢*dF=1J,
F F F F F
£a1¢dF:JW,, £a2¢dF=JW, izaldF:Jml, £za2dF=Jzaz, iyaldF:JWl,
[ypdF =7, [zpdF=J.,, [aidF=J,, [aidF=1J,,
F F

F F

IalazdF:Ja.az’ IyazdF:Jyaz
F

F

Let's write the integral /; with regard to the notations as follows:
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L= [Fa”—szaa‘l—svao‘2 v5, % s, Py aﬁﬂﬁu {Fa“—
Woa 7a > a ~a o or

Su+ { Ow Saﬂﬁw {S ou_you _; 0%, v, B,
o ot ot ot * ot ot T ot

aﬂz}s [S g 0y 0y OV, aﬁ1+JMZa£2i|§a2+[ ou _
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7ot 7 ot ot 7ot * ot ot ° o
0 0 0, 0
_Jwi_‘]w . Jtﬂ@l quz ﬁ JW IBZ ov +|:S %__S @ +J a0:|59+
77 ot ot ot 'Ot > ot ot ?9
ou oo oa ov 0
+S, —=J,, — .+, —+J, —’Bl +J,, ﬁz 5B, +
' Ot 'Ot 'Ot ' Ot 'Ot 2
ou oa oa ov 0
S, =T T T — ﬁ J, '82 5B, Ydx ‘
> ot 2ot > Ot > ot ot :

Similarly determine the second part of the kinetic equation (8), that is, the expression of
the integral I,

2 2 2 2 2 2
L=l] u_goa g% Swa—v s, Th g TP s |5 00y 04
X s 7ot or? ' Ot > ot or? ot
o’a o*v 0*p, 0B o’u o’a o’a, o*v
-J 24+J —+J L+J 2 0o —| S, ——J L—J +J,,—+
yz at2 Yo at2 yay at2 yay 6t2 1 y 6t2 yz at2 y atZ zp 8t
vi, TB g OB s, s Cu g Ty e OV, SR OB,
oot o o2 7o * ot ot M et " or?
2 2 2 2 2 2 2
+| S, a——./,a 0 4, 0 02’2+Jwa—‘;+.fa B T, o ﬁz SR+ S, a——.]a 0 % _
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Given the expressions of the integrals /; and />, of the variation of kinetic energy (6) we
write in vector form

8Y

©)

5det_jA " pova, —j

where Y = { u,o,w,a ,a ,0,v,B ] B 2} is a displacement vector; 4 — is a ninth—

order matrix; £ is a unit matrix.
The variation of the potential energy of the rod in this formulation is
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3
5IHdl = ,”(Z o,0e, jdvdt = “. [0'115611 +0,0e,+0,;0e;, }ZIle. (10)
t t v \i=l tv
Let's substitute the deformation expression (2) into (13):

5IHdt:II{0115(6_u y%_z%*‘(ﬂav +a %+a %j+
‘ ‘v

o ox ox o ox ? ox
+0135[—+ %—a2+a—¢ +%ﬂl+%ﬁ2j+
ox 16}
ov 0o 0 oo oa
+0125[§—z§—0{1 +£v+ Byl B+ jﬁz}}dm. (1n

Let us transform the variation of potential energy (11). To do this, open the brackets
under the variation sign and select the integral over the rod cross section. After some
calculations and notations from (11) we have:

5£Ha’t:£{Nx5u—M25al ~M Sa,+Q 6v+Q_Sw+M 50+

}d N _ o0, 00
+M _Sv+My 5p +M, 5B | - | ot — Lo+ —E g+

A Ox Ox
6Mz oM y aMx oM 0
+ ——Z 5a,+| 0 —— |Sat, + 50+ -0 |ov+
Qy ox % QZ Oox % Oox Ox QV Y
oM oM
H—Y 0 lsp+|—2_0 |5 \avar
ox L ox B | ' (12)

The following notations are introduced here:

[ondF=N,, [6.dF=0,, [oydF=M., [po,dF=M, [ac,dF=M,, [acdF=M,,
F F F F

F F

0 0
J.(al}y—alzz)szMX, J.O'HZdF=My, IaBdF:QZ, J.(O'13 —¢+O'12 —(DJdF:QV,
F F F Oz oY

oa oa
lo-m 5_ZldF = Qﬂ] > j613 a_;dF = Qﬂzi (13)

F

F

Given relations (3) and notation (13), the expressions for the internal forces and

moments, e.g. N and M a, » can berepresented as follows
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~ =\ OU oo oa
N =3 () 2 (s 5.,) 2 (5, -5,) 2
+(S¢—S¢(0)%+(S01—Salw)% (S —Sazw)aai }; (14)
0 » \O S\ 0
0 =365, -5,0) 20 (1,15 (1, - 12)

0 \9 0 \O )
+(1,,-12,) a? (1, 12, )%+(1ﬂ2 —Iazw)%}.

where

=[dF, S.=[ydF, S =|zdF, Sw=J¢JdF, S, =ladF, S, =[a,dF,
F F T F F 'F P F

Joy = [a,ydF, J, .= JCIdeF,Jaz,p =[¢ua, dF, J ey = [aa,dF, J, = [aidF.
F N F F F ©F

Integrals F,...., J“ containing plasticity functions @, e.g.

a

2
Fm :J‘axlFa'"'a J;Z :ja)azdF etc. are defined in a similar way.

F
Let's substitute expressions of internal forces and moments (14) into variations of
potential energy (12). Introducing some notations the variations of potential energy will be
presented in vector form

5.!Hdt=_|.{( )Y (B gy }E&de‘ +”{ )oYy

t o ox
+(B =B )+ —C”)gl+(Dy" D" }E‘%’xd’ ' ()
X

Consider variations in the work of external forces:

5jAdt IIZpﬁududt+jj2qﬁudsdt+jj2f§uds dt

t v o=l t s i=l t s i=1

> (16)

where p; — bulk forces at initial loading; g; — surface forces; f; — end forces.
To the relation (16) we substitute the displacement expressions (1). Open the brackets
and integrate over the cross — sections of the rod:
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5IAdt:II J‘[plé'(u—yoc1 —za, +ev+a,p +a2ﬂ2)+p25(v—29)+
t t x \F
+ p8(w+ yO)dF} dxdt+jj{“ql -ya, —za, +ev+a,p +a,p, )+

+q,0(v—20)+q,6(w+ y@)]dl}dxdt+.|‘ _”f]&(u —-yo, —za, + v+

S

vaf +a,f, )+ 1,60, —20)+ f.5(w+ yO)aS Jat| . 1

Let's introduce notations:

J-pldF:Nféa J'ypldF:Mzmﬁa J.ZpldFZM}fm,
F F

J‘(ppldFZM(Zﬁ, J'alpldF:M:;lﬁa FJ'azpldFZM;f,
F F F

jp3dF=Q , jp3dF 0", j(ypa_zpz)dF:Mia.
F F

Similarly, surface and end loads are defined, e.g. N ;7 , N f . Let us now rewrite
relations (17) as

5jAdt ”{N” NP +(07+0" o+ (07 + 07 Vow— (M + M e, +

(M"f +MH)5052 (M2 4 M )50+ M7+ M Jsv+ (M2 + M )5 -

+(M§f —Mg)éﬁz dxdt+j Nféu +0!'50+0 Gw—M! S0y~ M V5" —
t

I'(n) n) I'(n) (n) 06(n) n) 06(n) n)
—MIOSO £ MEO SV + MOOSEY + MO SFN e . (18)

In the case of considering the force of interaction with the medium ¢, — surface forces;
/™ — torsional forces, taken as follows [12,13]:

= _ki(n)(ui _uio)"'@' > fz = _ki(T)(ui _uio)+j;i >

where ki(n) — coefficients of interaction of the rod with the environment at the surface

of the rod; ki(T) — coefficients of interaction of the rod with the environment at the ends; u’

— components of the spatial seismic movement of the ground along the coordinate axes and
determined by analogy (1):
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0_ 0 0 0 0 0 0
u, =u —yoy —za, +ev- +af +a,p,,

0__ .0 0 0_ .0 0
u,=v —z0°, u, =w +y0". (19)
According to (1) and (19), the expressions ¢;, f; will take the form, for example,

q, :_kl [(u_uo)_y(al _alo)_Z(az _a3)+¢(V_VO)+a1(ﬂ1 - 10))+
+a,(B = BV+G, | 4 ==k [ (V=) =2(0-6")+4, |,

g5 ==k, [(w=w")+ (0 -0+, |.

In the same way, we define f| , f, , f5 . Substitute the expressions ¢, , f; in the
variations of the work of external forces and, introducing a number of notations, we obtain
relations of the form (18) [13] with ¥ OV MY, addition, i.e. expressions before the

a
variations 8, ..., 53, (18) have the following form: (Nfé +N” +N;”),....,(Mjﬁ +M7 +Mf) )

The interaction law and non—linear coefficients determined experimentally with regard
to the accumulation of damage in the ground should be further clarified.

Taking into account the introduced notations, the variations of the work of external
forces will be presented in vector form:

5[ Adr=| Q%de\ +[[o" avaxar . (20)

X

Substituting the vector expressions of variation of kinetic (9), potential (15) energies
and work of external forces (20) into the variational principle (4), we obtain

”{ aatY ;{(Ayn L (Byn_Bn,,)Y}+

ox

+(c cm)iﬁ (D" =Dy + }Eé‘dedH

Oox

+I{A"” A (B-"”—B”“)Y+QF}E5Y d | +IZ%E§de‘ -

From this variational equation we obtain the following boundary value problem:

~0'Y 0 v Y (pyn _ pna yn_na\OY | (yn v _o. (21)
et ax[() P (-5 )Y}( e N X e
d

{(Ay" )X (g - B’”)Y+Q°”}5Y| —OAdYEé‘Y‘ 0. @

ox

Here the quadratic matrices of order nine 4, B, C, D, the vectors of external forces of

order nine Q" and Q% and the coefficients have the following form:
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(a, =al" —a, b, =b" —b, ¢, ==b,, d, =d —d").
a, a, a; a, a5 a, 0 0 0 00 0 0 O 0 0O0OO
Ay Gy Gy Oy Oy G 0 0 0 o 0 0 O 0 0 O0O0OO
Ay ay Gy Gy G a, 0 0 0 00 0 0 O 0 0O0OO0
a, A a5 G a5 a, 0 0 0 o 0 0 O 0 0 O0O0OO
A=|ay a5, ay; ay ay a, 0 0 O B={0 0 0 O O O 0 O Of,
Qg G Qg Gy G g 0 0 0 o 0 0 O 0O 0 O0O0OO
0 0 0 0 a, ag 0 0 b, 0 b, by 0 0 0 0
0 0 00 ay ay g 0 by, by by by b 0 0 0
0 0 0 0 0 ay ay 0 0 by; by, 0 b, 0 0 0
00 0 0 0 000 000O0O0OO0O O O O
0 d, 0 dy dy 000 0 0 00 0 0 ¢, ¢35 O
0 0 dy, d, di; 000 00 00 0 0 0 cy oy
0 d4z d43 d44 d45 d46 000 00 0 0 0O Cy7 Cug  Cyo
D=|0d, 0 dy, d; 0 00 0|, C=|0 0 0 0 0 0 ¢5;, ¢c5, O |,
0 0 d, d, 0 d, 000 0 0 0 0 0 0 0 cpn cg
0 0 0 0 0 0 0O0O0 000 O0O0O0 O 0 0
0 0 0 0 000 00 0 0 O0O0 O 0 0
0 0 0 0 000 00 0 0 0 O0 O 0 0
where, for instance
r ! . [ . ! @ 2.
ap, _I_(F F,); ap, :[_(S);_Syw)a a13:[_(Sz_Sza))’ Ay = i (" =17);
0 0 0 o'
l a a 1 a, a, 1 . 1 yz YZy.
alS :T(S S}(u) alsz(S _Sz(u) a22 :T(Iy_]ya))’ a23 :T(I _Iw )’
0 0 0 0
a,, = ! v 1._); a ! (I =1"); a _1(1a22+1a22) a ! I.-1.);
24 = 5 Uy Ty, ) Gys = Ly ) Qe = o ) Uy =—"U,71,)
Iyh, g g I, I, I,
1 -1
az, =— (U* - ]W)) ays =—— I =1.7"); ayo =— U™ + 1),
1,h, 1, I,
(1¢7 _[(ﬂ ) — 1 ([Wﬂ _Ialfﬂ). _ 1 ([az(ﬂ _Iazfﬂ).
g = Ihz a45_1h » ’a46_1h o )
070 07"0
1 a2 a,2 1 aa aa 1 a,? a,2
— . _ . _ ).
6155_1_(1l _Ia)] ),asé—]—(['2+1w‘2),a66—1—(12 _Iwz )9
0 0 0

10
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2 | /2 | i
a, =—(F" —F" ,Aag = — S —8§%),
77 3[ ( w) 78 3[0h0( z zw)
I +1 1 - ;
“ =37 hz ey, 1)
[* I?
gy = S =8,) g =—-F—-F,
89 310h0 ( y ya)) 99 310 ( )

Given (14) from the variation equation (21), we have the following system of
differential equations of rod equilibrium at alternating loads with boundary conditions in
vector form:

%{( o Am)zi ( J’"_BnJ)Y}+( m Cw)(g (D}’n_Dm)Y:Q(n). )

Boundary conditions:

e ) O S
X

—=0. (24)
r

Here Y is the desired ninth — order function. Expressions of internal forces and
moments in vector form can be represented as

P 3Gh1 {( yn Zm)a_YjL

where P is a twelfth — order function vector
P= {NxaMyaMz MM, M, 0 ,M,..0,,0..0, ,Ma}.

The matrices A" . A" s B s B" of the twelfth—order square matrix and the elements

are described as follows:

Qo :bs,S; a :bs,é; ap :bs,4; bij :sza

~ ~ ~

blO,r = d2,s; b, = dr,(); b12,r = dr,4; (i,j=12,.95=7289,r=23,45,6;)

i = Yy

The finite difference method and the Ilyushin elastic solution method are used to solve
the boundary value problem. In the process of their approximation a central difference

scheme of the second order of accuracy is used [21,22]. The application diagram for the
external load distribution is shown in fig. 1.

11
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Fig 1. Diagram of external load distribution application

Vector equation (23) after applying the differences of the scheme takes the form:
( - A’”) V. (Biyn _Bim)yi +(Ciy" _Cz‘m)yi = Q- (26)

To solve the formulated algebraic equations (26) with appropriate boundary conditions,
the Godunov's run method [4, 21, 23] is used, using the following recurrence formula:

Vi=aV,, +B;i=N-1..1 (27)

i i+l
Here o, =(B, -Ca,_ ) Ai; B =(B - Ciai—l)il(ciﬂi—l -F)i=12,..,N-1L

In order to implement the above algorithm, a modified complex program in an object—
oriented language has been written [23].

2) Construction of methodology for problem solution under spatially variable loading of
rods (pipes) with allowance for damage accumulation. Let us now consider the
construction of a solution for any spatially — variable n — th loading of an elastic — plastic
rod (pipe) taking into account the accumulation of damageability. Suppose that after (m—1)

semicycle of loading, starting from the moment ¢ the instantaneous unloading takes

m-1°
place and a new loading is performed by the forces of the opposite sign. These forces will

() and stresses O'( ")

create the displacement field u( " , deformation g i

Following the theory of V.V. Moskvitin [2 ], let us introduce differences of the
following kind

1’71‘(") :(_l)n(uﬂnfl) (n)) —(n) _( 1) (e(n ) _ ("))

—(n) _( 1)11 (U(n ) _ (n)) (28)

The displacements of the points of the rod under alternating loading, by analogy with
(1), will be represented as

171(,,) _ ﬁ(n) _ycyl(n) _Zaz(n) + (0‘7(;1) +a]3](n) + azﬂ(n)

_ _ — — _ _ (29)
7P =5 2™ g =F" 1 g™,

12
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MOIEVIG)
(n), V(n

where u ) én)

, w' — displacement components under n-load; ,0{(" — section

angles under pure bending; , 1(") ,82(") — shear angles; @ — torsion angle; vl(") — shear

twist under n — load; ¢ — Saint —-Wenans torsion function.
The strain components, according to (2), are determined by the Cauchy formula:

0" e oay" ov® o) OB
el(1> = -y L, (D(y,Z) +a1(y,z) ﬂl +a2(y,z) .
Ox ox ox ox
(n) N (n)
61(3") = ow +y% *(”) + 2 a(ﬂ *(n) L aa] ﬁl(”) 8a2 ﬂ(”), (30)
ox ox oz
él(zn) = aL(”) —z %(") _ (Yl(") + 87(017(71) + % E(,,) L9 aaz ﬁ(n)‘
Ox Ox 8)/ ay 6)/

The physical equations of state for stresses and strains marked with a line are assumed
to be of the type (3):
(a) When using the Moskvitin model, taking into account the damageability of the material

El(lm =3G(1 _a)(n))é,(ln)’ 51(:) =G(- a)(n))él(:): G, =G(l— a)(m)él(zn); G1)

In the case of linear strengthening, the plasticity function is represented as

=) _

In the case of the generalised Mazing principle /1,, =41, g, =a,&,, using Gusenkov

n-s»
—Schneiderovich ~ deformation ~ diagrams Es(n) =2¢,A,=1—g, whereg, s

determined experimentally. When damage accumulation is taken into account [2]:
£"n)=a(1+a, e, +(3G)" B
Ji-050+ e )2 Ji-(1-5)] (-1,

and the damage function 7} is determined from the kinetic equation

o)

77
=f@,.n,); f=A4- - (32)
(1—ym;)
provided #(0)=0, n(y )=1, where N is the number of half-cycles before reaching the limit
state (failure).
b) using the Buriev model in current coordinates, taking into account variable loading:

13
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k-1
b _ 3G{e1(’1‘) [a)“‘)ef") + 5 ptthm o ’}}

m=1

13
m=1

k=1
O.(k) — G{eglf) _ a)(k)§3(1k) _ za)O(km)E?,Ol(km)}’
k=1
(k) _ (k) (k) = (k) 0(k—m) z0(k—m)
o= G{e12 -weg,’ — Zla) & } (33)
=

By deducing the equation of motion (equilibrium) for quantities with a line, we obtain a
system of differential equations with appropriate boundary and initial conditions, similar in

form to (21) and (22):
A2y (n
O N R B
(e - C’“’)ag " +(D" =D 40 =0
X
{(Ay" —A”)Z (B - B’”)Y+Q”’}5Y| =0; AdY" ESY™ | =0. (35)
t

Here the quadratic matrices of order nine 4, B, C, D, the vectors of external forces of
order nine Q" and Q7 and the coefficients have the following form:

(n) — a(n) a(n)
(@, =a;" —a;"", b;=b]"-b"", ¢, ==b;, d,=d;" =d;"").

ij ij> M

In particular, from (34) and (35) we have the following system of differential equations
of equilibrium of a rod (pipeline) under space — variable loads with boundary conditions in
vector form (in current values):

;C{(AJ" A )agxn (B“ Bn,z(n))Y(n)}-(Cyn _ il )5; (D)n D"’”("))Y(”) _pln

6Y0(n_1) +anz(n)YO(nfl) +

ox ox

+ 2 An,z(n) aYO(n_l) + BnJYo(n—l) + Cn,z(k)
ox

N i{ [Am n-m) 6 (Yo(,,_m) _ Yo(n—m—l))+ Bnﬂ(n—m)(yo("—m) _ YO(”_m_l)):l +

Ox
+ Cn,l(nfm) g (YO(mfm) _ YO(nfmfl))_‘l_ Dm(nfm)(Yo(mfm) _ YO(nfmfl))]} . (36)
Oox
Boundary conditions:

n) 0(n-1)
{(Ayn _ Awn)) ag : +( B Brm(n))y(n) _ Qi ey le) _ gt aYa _
X X

14
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_Z][ gptn-m) O (Yo<n—m> _ Yo<n—m—1>) L gt (YO(n—m> _ Yow—m—]))]} SY"

< (37
m=1 ax

r

Here Y™ are the desired vectors of the ninth — order function in the current coordinates.
Expressions of internal forces and moments in vector form can be represented as

(Zy” N Zm(n))ag_(n) +(§yn 0 )y(n> -
X

» 3GhI
P(): 30 0

where P™ is a twelfth — order function vector

(n) __ (n) (n) (n) (n) (n) (n) (n) (n) (n) (n) (n) (n)
PO = (N MO MO MO MO M, 00 M, 0,00, 00 M |

4

The matrices 4" , A4 ,B7  B™™ of the twelfth-order square matrix and the
elements are described as follows:

ay=ay, G, =bs; a,,=b g a,,=b,; b;=b,,

ij
b =d, b, =d b, =d

10,r 2,5 “lLr r,6° “12,r r,4°

(G, j=12,..95=789r=23456)

The finite difference method [21] and modifications of the Ilyushin elastic solution
method [4] are used to solve the boundary value problem. During their approximation a
central difference scheme of the second order of accuracy is used.

The vector equation (36) after applying the differences of the scheme takes the form:

(47 — 42 (B — ey 1 (cm )y =6 1 5"+ 0™ o)

i+1

To solve the formulated algebraic equations (30) with the corresponding boundary
conditions, a run—time method is used using the following recurrence formula:

V=aV, +f; i=N-1,...L. (40)

i i i+l

Here o, =(B,—Ca, ) '4; B =(B,-Ca, ) (CB_,—F); i=12,..,N—-1.

3 Results and discussion

First, let us consider the results of calculation of thin — walled rods of rectangular cross—
section, buttressed at the ends under repeated — variable loading according to the
generalized principle of Masing — Moskvitin [21-23]. We give results of calculation of thin
— walled bars of rectangular cross — section, pinched at the ends under repeated alternating
loading. The problem is solved with the following input data: geometrical and mechanical
characteristics of the rod:

15
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[ =250 sm, hy =10 sm, b, =10 sm,

E=210°"8 & —3210% ¢ —0.0015;
sm sm

uniformly distributed external loads: f;" =25 ; f; =50; ]7(; =10; £ =5 kgz ;
sm

_:—;a:_; *:_;a*:_; (n) _ -1 n+1.

Table 1 shows the maximum values of displacement vector 171.(") along the length of the

rod under cyclic loading (7 =1, 2, 3, 4, 5) according to the generalized principle of Masing
—Moskvitin for different materials (B — 96, D —16T and St TS).

The variable loading theorem was used to determine the true values of the calculated
values. The condition for the occurrence of secondary, tertiary, etc. plastic regions is

o >a,0,, where ., is the scale factor.

Table 1. Maximum displacement vector values

. . licall
Displacement Number Cyclically hardening uns(t:r}glg(t:ﬁer}l]ing
vector (7)) of load B-96 D-16T StTS
() 0=2.08;2=0.047 | 0=2.02;@=0.03 | O=1.93; 2=0.011
1 2 3 4 5
w(0.5) 1 -0.27217078 -0.27217078 -0.27217078
2 0.54432625 0.54433769 0.54435589
7005) 3 -0.54431336 -0.54432956 -0.54435274
4 0.54430573 0.54432480 0.54435092
5 -0.54430034 -0.54432138 -0.54434963
We(0.5) -0.27215250 -0.27215924 -0.27216635
a,"(0.2) 1 -0.82530072 -0.82530072 -0.82530072
2 1.65055491 1.65058966 1.65064538
a"(02) 3 -1.65051591 -1.65056491 -1.65063576
ro 4 1.65049275 1.65055051 1.65063016
5 -1.65047651 -1.65054020 -1.65062621
a%(0.2) -0.82524549 -0.82526567 -0.82528715
B(0.1) 1 -0.01985111 -0.01985111 -0.01985111
2 0.03970113 0.03970194 0.03970327
Z(0.1) 3 -0.03970023 -0.03970136 -0.03970304
ro 4 0.03969970 0.03970103 0.03970291
5 -0.03969933 -0.03970079 -0.03970282
£5(0.1) -0.01984984 -0.01985029 -0.01985079
7(0.5) 1 -0.25519159 -0.25519159 -0.25519159
2 0.51036890 0.51037953 0.51039654
79 (0.5) 3 -0.51035692 -0.51037199 -0.51039365
' 4 0.51034984 0.51036755 0.51039197
5 -0.51034482 -0.51036438 -0.51039079
7(0.5) -0.25517460 -0.25518087 -0.25518752
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The variable loading theorem was used to determine the true values of the calculated
values. It should be noted that the values of the calculated values obtained using the
variable loading theorem and the relations linking the stress and strain components in the
current coordinates using the generalised Masing principle coincide.

As a second example, the calculation of thin — walled rods of rectangular cross — section
clamped at the ends under alternating loading with allowance for damage accumulation is
performed. The problem is solved with the following initial data: material constants of the

kinetic ~damage equation: A=12-10"% a=/8=>5; y=0.8, ¢,=0.97; B= 1.4-10%;
£,=0.0015. Calculation results are given (y=0; z=b,) at cross — sectional points of the rod;
x=0.0; x=0.2; x=0.5 under cyclic loading. Table 2 shows the kinetics of change in
ductility function o™ and damageability 77("), as well as strain intensity £ (5) and

stresses 5 () as a function of cyclic loading.

Table 2. Influence of damageability on plasticity parameters

no | x| e" | @) | 1009 | 10°7 (n) | 1075, (1)
0.0 | 0.8677 0.8677 0.0000 1.7333 4.7733
n=1 0.2 | 0.7422 0.7422 0.0000 0.6859 3.7259
0.5 | 0.7160 0.7160 0.0000 0.6091 3.6491
0.0 | 0.7914 0.7881 0.0445 1.7340 7.7228
n=2 0.2 | 0.5492 0.5409 0.0256 0.6862 6.6750
0.5 | 0.4987 0.4893 0.0231 0.6094 6.5982
0.0 | 0.7889 0.8021 1.8118 1.7334 7.1994
n=>5 0.2 | 0.5429 0.5765 1.2964 0.6860 6.1520
0.5 | 0.4916 0.5294 1.2193 0.6092 6.0752
0.0 | 0.7885 0.8066 2.2884 1.7341 7.0361
n=6 0.2 | 0.5420 0.5878 1.6284 0.6862 5.9883
0.5 | 0.4906 0.5422 1.5302 0.6094 5.9115
0.0 | 0.7876 0.8191 3.4466 1.7335 6.5727
n=9 0.2 | 0.5398 0.6193 2.4125 0.6860 5.5252
0.5 | 0.4881 0.5776 2.2606 0.6092 5.4484
0.0 | 0.7875 0.8231 3.7556 1.7341 6.4282
n=10 | 0.2 | 0.5394 0.6293 2.6155 0.6862 5.3803
0.5 | 0.4876 0.5889 2.4487 0.6094 5.3035

Figure 2 shows the calculated values of W and 0{1(") obtained considering the secondary

plastic deformations and elastic unloading. Note that the residual calculated values differ
significantly from the values calculated from the elastic unloading theorem.

rod length rod length
03 08
02 A 081 N
04 4T, A
47 . \
3 0271 -\
2 0 0 2
; . K
011 021" K
04 1 /,’
-02 1 05 4 PN
03 08
- =.atn=l  ————- at n=2 elastic unloading  =*+*-++ second deformation

Fig. 2. Determination of residual displacement vector values W% and Otl(k)
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For different load intensities (5 =1,1.5,2) the variations of displacements W™, "

and moments M ;") , M i") along the length of the rod are shown in Fig. 3 and 4.

alfal-l ———alfal-2 alfal-3

Fig. 3. Displacement variations along the length of the rod

25 2
[

2
15
15 /
/ N
1
05
05
0
o T T 3 T d 0,2 0,4 0,6 08 1 1,2
02 04 0,6 08 1 1,2 05
05 1 g
1 -1
—Mz-1 —Mz-2 Mz-3
—My1 —_—My2 My3
15

Fig. 4. Changes of moments along the length of the rod

The analysis of numerical experiment shows that the values of plasticity function and
damage zone change with increasing number of loading cycles. This, in turn, affects the
kinetics of displacements, forces and moments under alternating loading of elastoplastic
structural elements.

4 Conclusions

A system of differential equations of motion (equilibrium) for thin—walled rods and
pipelines is formulated and on the basis of variational principle the boundary problems
under spatially variable loading are generated. The kinetics of stress — strain state of
structural elements under alternating loading with consideration of generalized Mazing's
principle and damageability of material is investigated. Influence of cyclic diagrams of
deformation, secondary plastic deformations and elastic unloading on calculated values is
also shown.

This work was financially supported by the International Foundation for Basic
Research, BRFFR (Project No. IL —4821091577).
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