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Abstract. As is known, it is customary in the literature to divide 
degenerate equations of mixed type into equations of the first and second 
kind. In the case of an equation of the second kind, in contrast to the first, 
the degeneracy line is simultaneously the envelope of a family of 
characteristics, i.e. is itself a characteristic, which causes additional 
difficulties in the study of boundary value problems for equations of the 
second kind. In this paper, in order to establish the unique solvability of 

one nonlocal problem with the Poincaré condition for an elliptic-
hyperbolic equation of the second kind developed a new principle 
extremum, which helps to prove the uniqueness of resolutions as signed 
problem. The existence of a solution is realized by reducing the problem 
posed to a singular integral equation of normal type, which known by the 
Carleman-Vekua regularization method developed by S.G. Mikhlin and 
M.M. Smirnov equivalently reduces to the Fredholm integral equation of 
the second kind, and the solvability of the latter follows from the 

uniqueness of the solution delivered problem. 

1 Introduction 

Boundary value problems for degenerate equations of elliptic and equations of mixed types 

are in the center of attention of mathematicians and mechanics due to the presence of 
numerous applications in the study of problems in mechanics, physics, engineering and 

biology. Starting from [1], [2], a new direction has appeared in the theory of equations of 

elliptic and mixed types, in which nonlocal boundary value problems (problems with a 

shift) and Bitsadze-Samarskii problems are considered. Further, it turned out that non-local 

boundary conditions arise in problems of predicting soil moisture [3], in modeling fluid 

filtration in porous media [4], in mathematical modeling of laser radiation processes and 

problems of plasma physics [5], as well as in mathematical biology [6]. 

Solving various boundary value problems with the Poincaré conditions or with a 

conormal derivative for the Tricomi, Lavrentiev-Bitsadze and more general 

equationsdevoted to a large number of articles [713]. We note that the results of all the 
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listed papers were obtained for equations of the first kind, and for equations of the second 

kind, nonlocal boundary value problems with the Poincaré condition have not been 

previously studied. Therefore, the study of non-local boundary value problems with a 

conormal derivative for equations of mixed elliptic-hyperbolic type of the second 

kindseems to be very relevant and little studied. Note the works [14,15]. In this paper, we 

study a nonlocal boundary value problem with the Poincaré condition for an elliptic-

hyperbolic type equation of the second kind, i.e. for an equation where the line of 

degeneracy is a characteristic. 

2 Statement of the problem 

Consider the equation 
 

= 0,
m

yyxx
sgny y u u  0;1m  (1) 

 

Let  is a finite simply connected region of the plane of independent variables x, y, 

bounded at 0>y crooked dot ends (1,0)(0,0), BA and segment 0)=(yAB , and when
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equations (1). 

Let further  1
0 ,y    2 0 ,y    

 ( , ): 0 1, 0 ,J x y x y   
1 2

,J   2 ( 2),m m   and 

 0,5;0 .  
 

(2) 

 

Problem.C . Required find function ),( yxu , which has the following properties: 

1)    1

1 2
( , )u x y C C J       , and the derivatives

x
u  and

y
u can address 

infinity of order less than one at points  0,0A and  1,0B ;  

2)  2

1( , )u x y C 
 
is a regular solution of equation (1) in the domain 

1 , and in the 

region
2 is a generalized solution from the class

2
R

 
[16];  

3) the gluing condition is satisfied on the degeneracy line 

 

0 0
lim ( , ) = lim ( , )

y yy y
u x y u x y

 
  (3) 

 

4) satisfies the following boundary conditions 

 

 ( ) [ ] ( ) = ( ), 0 ,
s

s A u s u s s l


      (4) 

 

0 1
( ) ( ) = ( ), ( ,0) ,

d d
u x b u x c x x J

dx dx
        

 (5) 

E3S Web of Conferences 401, 03048 (2023)

CONMECHYDRO - 2023
https://doi.org/10.1051/e3sconf/202340103048

2



 

where l  the length of the whole curve , s  are length , counted from the point

(1,0)B , a ( )s , ( )s , )(s , ( )c x given functions, and 0,b const   

 

( ) ( ) 0, 0 ,s s s l      (6) 

 
1 2( ), ( ), ( ) [0, ], ( ) [0,1] (0,1),s s s C l c x C C     

  
(7) 

 

here 

2 ( 2)

0

2
,

2 4

m
x m

x

  
      

and  

2

2

1

1 2
; 1

2 4

mх m
x


 

        
 

 (8) 

 

- points of intersection of the characteristics of equation (1), emerging from the points

x J , with characteristics AC and BC respectively, and [ ]sA u determined from the 

formula 

 

  m

s

dy u dx u
A u y

as x as y

 
 

 
. 

 

Note that if ( ) 0, 0s b   , then the tasksC matches the tasksT studied in [17]. 

Therefore, in what follows, we will assume that 0)( s . 

Uniqueness of solutions to the problem C . 

To prove the uniqueness of the solution to the problem C . The following lemmas play 

an important role. 

Lemma 1. If the function  x  satisfies Hölder's condition with exponent 2k   
at

0 1x  , then the function 

 

   1 2
0

1

(1 2 ) xT x D x



 

   (9) 

 

can be represented as 

 

     
2

0

2
.

2

x
sin d

T x x t t dt
dx





 

 

 

Lemma 2. Let the conditions 

 

     
1,

0,1 0,1
k

x C C     , 2k     (10) 

 

and function  x
 
at the point   0 0 0,1x x x 

 
takes on the largest positive value 

(LPV) and the smallest negative value (SNV). Then the function 
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1 2

0

( )1 ( )
( )

t T t
E x dt

x t





 

at the point 0x x can be represented as 

 

       
2 12 1 2 12

0 0 0 0 0(1 ) 2 1 (1) 1E x x x cos x x x
    
    

  
      

 
   

 

   

 

0

0

2 2 2 2

1
0 0

0 0 0

1 2 2

x

x

x t t x
cos d t d t

x t t x
 

   
 

 

 
 

  

 
  

 
   (11) 

 

Lemma 3. Let conditions (2), (10) be satisfied and the function  x at the point

  0 0 0,1x x x 
 
accepts refineries (SNV). Then the function ( )T x (see (9)) at the 

point 0x x can be represented as 

 

 
 

 
0

1 2
0 0

1

1 2 x x x
T x D x





 
 

 

   
   

 

0

2 1

2 2

0
0 0

0 0

2
1 2

x
x tSin

x x d t
x t





 
 






 
 
 
 


  
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and 

    0 0 0,0 0T x T x x J     (12) 

 
Proof of Lemma 1-3is carried out in the same way as in [22]. 

Lemma 1-3 implies the following. 

Theorem 1. (An analogue of the extremum principle of A.V. Bitsadze). If conditions (2) 

are satisfied and 0b  , then the solution  ,u x y problem C  at   0c x  and (1) 0 

own refinery and SNV in a closed area 1 only reaches . 

Proof of Theorem 1. Indeed, due to the extremum principle for elliptic equations [5], 

[23], the solution ( , )u x y equations (1) inside the region
1 cannot reach its refinery and 

SNV. Let us show that the solution ( , )u x y equation (1) does not reach its OR and SNV on 

the segment J . Assume the opposite, let ( , )u x y some point
0

( ,0)x segment J reaches its 

refinery (SNV). Based on Lemma 2, if the function  x at the point
0

( ,0)x accepts the 

refinery (SNV), then ( )A x at the point 0x x can be represented in the form (11), and 

 

    0 0 0,0 0 ( ,0)E x E x x J     (13) 

 

Now let's define the sign ( )x  at the point
0

( ,0)x J . Due to (12) and (13) at ( ) 0c x  we 

get 
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0 0 0
( ) 0 ( ( ) 0), ( ,0)x x x J       (14) 

 

But on the other hand, by virtue of the Zaremba-Giraud principle [24], [26], for the solution 

of equation (1), taking into account (15), we have 

 

0 0 0
( ) 0 ( ( ) 0), ( ,0)x x x J    

  
(15) 

 

Taking into account (4) from (14) we find 

 

0 0 0
( ) 0 ( ( ) 0), ( ,0)x x x J      

 

This inequality contradicts inequality (15). In this way, ( , )u x y does not reach its 

refinery (SNV) in the open section J . Theorem 1 is proved. 

Theorem 2. If the conditions of Theorem 1 are satisfied, and the functions ( )s and

( )s near points (1,0)(0,0), BA satisfy conditions (7) and 

 

(0) 0, ( ) 0l       (16) 

 

  0
 

0

2 2 2
2( )  , 1 0, 0,

m m
ms const s l s m const


 

 


               (17) 

 

then in the area D there cannot be more than one solution to the problemC . 

Proof of Theorem 2. Let ( ) ( ) 0s c x   , then, by virtue of Theorem 1, it suffices to 

show that the solution of the problem C cannot reach its positive maximum and negative 

minimum on . 

Assume that a positive maximum (negative minimum) is reached at some point 0s , 

different from the points (0,0)A and (1,0)B . Then at this point, due to the Zaremba-Giraud 

principle [24, 27]
0
 [ ] 0sA u   

0
 [ ] 0sA u  , and the boundary condition (5) takes the 

form 

 

0

0 0

2

0

( ) ( )
[ ]

( )
s

s s
A u u

s

 


   

 

But this is impossible due to condition (7). 

Therefore, at interior points function ),( yxu does not reach its positive maximum 

(negative minimum). 

At points (0,0)A and (1,0)B , taking into account (2), (3), (17) we have respectively. 

 

0
lim ( ) [ ] 0s
S

s A u



 

and lim ( ) [ ] 0s
S l

s A u


   (18) 

 

If a positive maximum (negative minimum) is reached at the point (0,0)A or (1,0)B , 

then by virtue of (18) the boundary condition (5) takes the form 
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(0) (0,0) 0u 
 
or ( ) (1,0) 0l u   

 

Hence, taking into account (16), we obtain 

 

( ) (0,0) (0) 0,    ( ) (1,0) (1) 0.u A u u B u          (19) 

 

Means, ),( yxu does not reach a positive maximum (negative minimum) at points

(0,0)A and (1,0)B . In this way, ),( yxu does not reach a positive maximum (negative 

minimum) on the curve . 

Based on the extremum principle (see Theorem 1), we conclude that constyxu ),(
 

in 1 . Therefore, taking into account (19), we have 0),( yxu in 1 . Due to the 

uniqueness of the solution of the Cauchy problem in the domains
2 ( 1,3)j j  for equation 

(1), we obtain that 0),( yxu in 2 ( 1,3)j j  . Hence it follows that 0),( yxu
 
in  . 

This proves the uniqueness of the solution of the problem C . Theorem 2.is proved. 

Existence of a solution to the problemC  

When studying the problemC an important role is played by the functional relationships 

between  x  and  x from the elliptic and hyperbolic parts of the domain , where 

 

     ,0 , ,0 ,u x x x J     (20) 

 

 
 

 
   

0 0

, ,
lim , lim , ,0 .
y y

u x y u x y
x x x J

y y
  

 

 
  

 
  (21) 

 

Generalized solution of the Cauchy problem with data (20), (21) for equation (1) from 

the class 2R in the area of
2 is given by the formula [16], [3]: 

 

             
0

,,u t t T t dt t t N t dt
 

  



     
  

        (22) 

 

Where 

 
2

22
( )

2

m

x y
m




  


,
2

22
( ) ,

2

m

x y
m




  


 
2 1

2 2

(2 2 )
2(1 2 ) ,

(1 )

 
 



  
 

   

 

     22cos ,N t T t t       (23) 

 

     
2

0

,
x

x x t T t dt





     (24) 

 

Functions  T x
 
and  x

 
continuous in  0,1 and integrable on 0,1   , a  x

 
vanishes on 

the order of at least 2 at 0x . 

Putting 0  , x  and x  , 1  respectively, in (22), taking into account (8), after 
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some transformations we obtain 

 

     0
0

,

x

u x x t t N t dt
   

   
   (25) 

             1

1

0

.1 1
x

x

xu x t t T t d t t x t N t d t
  

            (26) 

 

We put (25) and (26) in the boundary condition (6), by virtue of the fractional integration 

operators and (23) we obtain a functional relation between  T x
 
and  x 

, transferred 

from the area 
2

 
on the J : 

 

    
2 2 2

22 2

1

cos2 (1 )
2 cos 1 1 ( ) ( )

2cos

x b x
x b x x b x x T x

 
   

 



 

     
        

 
 

 
 

 
12 2

0 1

0

1sin (1 ) ( )
.

1 1
x x

b xb t T t x
dt D c x D c x

x t

 
 

  

 
 

   
      (27)

 
 

The solution of the problem DK with conditions (5) and (20) for equation (1) in the region 

1D exists, is unique and can be represented in the form [16. see (10.78)]: 

 

2 2

1

0 0

( )
( , ) ( ) ( ,0; , ) ( , ; , )

( )

l
s

u x y G x y d G x y ds
s


     

 


 

   (28) 

 

Where 
2( , ; , )G x y    Green's function of problem DK for equation (1) [16]: 

Differentiating with respect to y equation (28), then directing y to zero we get the 

functional relation between ( )x and ( )x  , transferred from the area
1 on the J : 

 

 

1

2 1 2 12
2 2 2

0 0

1
( )

( ) ( ) ( ) ( ) ( )
1 2 2

x

x

k d t dt
x x t t dt t x t dt k

dx t x tx

 




  



 






      
   

  
 

1 2

2 2

0 0

( ,0; ,0) ( ( ), ( ); ,0)
( ) ( ) ,

l
H t x q s s x

t dt s ds
y y

 
 



 
 

   
   (29) 

 

where ( )s  is  a solution to the integral equation 

 

  2

0

( ) 2 ( ), ( ); ( ), ( )( ) s

l

s A q t t x s y st    
  

 

 2 .
( ) 2 ( )

( ), ( ); ( ), ( )
( ) ( )

s s
q t t x s y s dt

s s

 
 

 





   

 

And  2 , , ,q x y 
 
is the fundamental solution of equation (1) and it has the form: 
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       
4 2

1 22

2 2 1

4
, , , 1 1 ,1 , 2 2 ;1

2
q x y k r w F w

m


 

    


  

      
 

 

 

where 

 
 

22 2 2
2

2 2
22

1

4

2

m mr
x y

r m
 

   
    

  

, 

2

2

1

1
, , 0,

2( 2) 2

r m
w

r m
     



 
 

2 2 2

2

11 4

4 2 2 2
k

m




 


  

  
   

, 

 

 , , ;F a b c z
 
is hypergeometric function of Gauss [23]. 

Substituting (24) into (29) and taking into account some identities of fractional differential 

operators, we obtain a functional relation between ( )T x
 
and ( )x  , transferred from the 

area 
1
 
on the J : 

 
21

2 2

0

1 1 1 2
( ) ( ) ( )

1 2 1 2 1 2

k tg k t t
x T x T t dt

x t x x t xt



 


 



     
               


 

 
21 1 12

2 2

0 0

2 ( ,0; ,0) 2 1 ( )
( )

1 2 1 1 2
t

H z x k t T t dt
T t dt z t dz

y x x




 


   

    
     

  
 

2

0

( ( ), ( ); ,0)
( ) , ( ,0)

l
q s s x

s ds x J
y

 



 

 . (30) 

 

Theorem 3. If conditions (2), (3), and (7) are satisfied, then in the region the solution of 

the problem C  exists. 

Proof of Theorem 3. Excluding ( )x  from relations (27) and (30), taking into account (4) 

and (24), we obtain a singular integral equation of the form: 

 
2

1
2

1
0

1

0

( ) 1 1 1 2
( ) ( ) ( ) ( , ) ( )

1 2

P x t t
P x T x T t dt K x t T t dt

i x t x x t xt






    

            


 

 

( ), 0 1,F x x    (31) 

 

Where 

 

2
1 1 2

1
( ) ( ) ( )

1 2 2cos

k tg
P x d x d x

 

 
 



, 2 22
2 1( ) ( ) sin (1 )

1 2

ik
P x d x ib x 




  


, 

 
22 2 2

2 2 2 1
1

1 ( ,0; ,0) sin (1 2 )(1 ) 2 ( ) 1
( , ) ( )

2 (1 2 )(1 2 ) 1t

H z x b t t k d x t
K x t d x z t dz

y x t xt x x


 

  


     

     
       

 

 
 

 
 

 2
1 0 1

0

1( , ; ,0)
( ) ( ) ( )

1 1

l

x x

b xq t x x
F x d x s ds D c x D c x

y


 


 


 

  
    

, 
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equation (31) is an equation of normal type [23, 24]. 

Applying the well-known Carleman-Vekua regularization method [23], we obtain the 

Fredholm integral equation of the second kind, the solvability of which follows from the 

uniqueness of the solution of the problem C . Theorem 3 is proved. 

3 Conclusions 

Thus, with the help of the new extremum principle developed by the authors of the article 

for an equation of the second kind, the uniqueness of the problem posed is proved. When 

studying the existence of a solution to the problem under study with the help of functional 

relations, a singular integral equation of normal type is obtained, the solvability of which 

follows from the uniqueness of the solution to the problem. The article presents new 

mathematical results. Which are of interest to a person skilled in the art. What can be used 

to build some models of gas and hydrodynamic processes, when predicting soil moisture, 

when modeling fluid filtration in porous media. 
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