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Abstract. Equations of mixed type, the degeneracy line of which is the 
envelope of a family of characteristics, therefore, is itself also a 
characteristic, in the literature it is customary to call equations of mixed 
type of the second kind, which causes additional difficulties in the study of 

boundary value problems for equations of the second kind. In the present 
work, a boundary value problem for a homogeneous equation of parabolic-
hyperbolic type of the third order of the second kind is investigated. 
Necessary and sufficient conditions for the existence and uniqueness of a 
generalized solution of the problem are found. In some special cases, the 
representation of the solution of the problem under study is written out 
explicitly. 

1 Introduction 

At present, boundary value problems for equations of mixed type have become an 

important part of the modern theory of partial differential equations. One of the main 

problems in the theory of partial differential equations is the study of mixed type equations, 

which is of both theoretical and practical interest. In 1959, I.N. Vekua pointed out the 

importance of the problem of equations of mixed type in connection with problems in the 

theory of infinitesimal bendings of surfaces. The problem of the outflow of a supersonic jet 

from a vessel with flat walls is reduced to the Tricomi problem for the Chaplygin equation 

(a degenerate equation of mixed type). There are a number of works by F. Tricomi, S. 

Gelderstedt, A. V. Bitsadze, M. S. Salakhitdinov, T.D. Dzhuraev and their students in 

which the main mixed boundary value problems are studied and new correct problems are 
posed for the equations of the elliptic-hyperbolic, parabolic-hyperbolic types of the first 

kind, i.e. equations for which the degeneracy line is not a characteristic. 

In recent years, a large number of papers have appeared devoted to the study of equations 

of composite and mixed-composite types. Correct boundary value problems for equations 

of mixed-composite type, the main part of which contains an elliptic-hyperbolic operator, 

were first formulated by A.V. Bitsadze (see [1, 2]). These problems and some of their 

generalizations have now been studied in some detail. We note that the results of all the 
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above works were obtained for equations of the first kind, and for equations of the second 

kind of the third order, boundary value problems have not been previously studied. 

Therefore, the study of boundary value problems for mixed type equations of the second 

kind seems to be very relevant and little studied. We note the works [3-6]. In this paper, we 

study a local boundary value problem for equations of mixed composite type of the second 

kind, i.e. for an equation where the line of degeneracy is a characteristic. 

2 Statement of the problem 

Consider the equation 
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and the domain 
1

D
 
at 0x  limited by segments OA, AD, BD, OB of straight lines

0,1,1,0  xyxy   respectively. 

The general solution of equation (1) can be represented as [5]: 
 

( , ) ( , ) ( )u x y z x y x      (3) 
 

where ),( yxz is  regular solution of equation (2) in the domain 
1D , and in the domain 

2D  

is a generalized solution of the class R. Denote  x  in the following form: 
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and  1 x has all the derivatives in equation (1) and the smoothness of the function is 

given by the definition of a generalized solution of the class R of equation (1). 

Dirichlet problem. Required to define a function  yxu , , which has the following 

properties: 

a)    ;, DСyxu 
 

E3S Web of Conferences 401, 03049 (2023)

CONMECHYDRO - 2023
https://doi.org/10.1051/e3sconf/202340103049

2



b) function  yxu , is a generalized solution of equation (1) of class R in the domain
2D , and 

in the domain
1D  is regular; 

c) the gluing condition is satisfied on the degeneracy line 
 

0 0
lim lim ;
x x

u u

x x 

 
 

   

 

d) 𝑢𝑥continuous up to the transition line both on the left and on the right; 

e) satisfies the boundary conditions 
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mm is coordinate of point C to 𝑥. 

Note that this problem in the case 0m studied in [2], and in the case 01  m
considered in [1]. 

Without loss of generality, we can assume that     11,00  ww . Based on (3) and 

boundary conditions, the Dirichlet problem is reduced to the definition of a regular solution 

in the domain 
1

D , a generalized solution of the class R in the domain 2D equation (2) 

satisfying the conditions 
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3. Uniqueness of solutions to the problem. We will prove the uniqueness of the problem 

under consideration by the method of energy integrals. In the domain of 𝐷1 we have the 

equation 0
yxx

zz
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Can express xx
zz via 

2)(
xxxx

zzz
x
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  then the last equality takes the form:  
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Applying Green's formula, we get the following: 
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Let us show that the second integral of the left side of the equality is equal to zero. To do 

this, we use Green's formula and since 
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we have 

 

    0,0,0

1

0

 dyyzyz x
   (5) 

 

Integrating the identity 
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by domain 𝐷2 and applying Green's formula to the right side of the equality, we have 
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Let us divide the first integral into three parts i.e. and integrating by parts, respectively, we 

have 
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    0,0,0
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Then, inequalities (5) and (6) lead to the equality 
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Therefore, from (4) we obtain 
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AD
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1
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BD

 we get 0),( yxu
 
in 𝐷1. Insofar as 0
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and from the 

uniqueness of the Cauchy problem in the hyperbolic domain we obtain 0),( yxu
 
in 2D , 

which was to be proved. 

Existence of a solution to the problem. It is known that the solution of the Cauchy problem 

for the equation 02 zL
 
in the domain of 2D

 
has the form 
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Because ( , )z x y  is generalized solution of the Cauchy problem for the equation 0
2
zL in 

the domain of 
2

D from the class𝑅2then has representation (7) and 
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To represent the solution of the equation 02 zL
 
in the domain of 2D satisfying the 

boundary conditions        xwxzyzyz
OAADOB 11,,   we use the solution 

of the first boundary value problem, i.e. 
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Where   ,;, yxG
 
Green's function of the first boundary value problem for the heat 

equation and it has the form[7-8]: 
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The last equality can be expressed as follows 
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Equation (12) is an integral Fredholm equation of the second kind, the solvability of which 

follows from the uniqueness of the solution to the problem and is determined by the 

formula 
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The study of equation (16) shows that it is an integral Fredholm equation of the second kind 

with a weak singularity. Its unique solvability follows from the uniqueness of the solution 

of the problem. Solutions of the integral equation (16) can be written using the resolvent as 
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The latter system has a solution, which proves the existence of a solution to the 

Dirichlet problem. 

Studies on the smoothness of given functions. It can be seen that if we use from (18), 

we can find𝑇(𝑦)those. using the fractional operator, we rewrite𝑁(𝜂)in the following form: 
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Let us present some auxiliary expansions of the Green's function involved inside the 
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For (21) to take place, it is necessaryФ2was a continuous function, then from the 
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definition of integro-differential operators of fractional order 𝛼 > 0 those. From
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It can be seen that the right side of equation (23) has a weak feature. Therefore, we cannot 

immediately differentiate it. To avoid this, we will first integrate by parts and then 

differentiate. Repeating this process five times and putting the result obtained in (22), then 

we choose among them the term that has the largest singularity, i.e.
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unique. 

3 Conclusions 

Thus, with the help of energy integrals, the uniqueness of the solution of the boundary 
value problem for the homogeneous equation of parabolic - hyperbolic type of the third 

order of the second kind is proved. Necessary and sufficient conditions for the existence of 

a generalized solution of the formulated problem are found. An explicit representation of 
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the solution of the problem under study is obtained. The results obtained and the developed 

methods make it possible to further investigate similar boundary value problems for a 

homogeneous parabolic-hyperbolic type equation of the third order of the second kind. 
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