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Abstract. The transverse vibrations of a two-span beam bridge, the shore 
supports of which interact with the surrounding soil during seismic action, 
are considered. The condition is accepted that the deformations of 

structures do not go beyond the limits of elasticity and vibrations are linear 
in nature. The bridge supports are assumed to be submerged in the ground 
and interacting with a rigid body under the action of non-stationary 
dynamic influences. The case is considered when the left, middle and right 
supports have equal masses and interact with the surrounding soil in the 
same way. The symmetry condition is applied, and it is sufficient to 
consider the equation of the right half of the beam. The problems are 
solved by the analytical Fourier method under the given boundary 

conditions. The results obtained are presented in the form of stress 
distribution over time and length of bridge structures, and their analysis is 
also presented. 

1 Introduction 

The Republic of Uzbekistan does not have direct access to seaports, there are no navigable 

rivers, and there are several mountain ranges in the country, impeding the development of 

railway and pipeline transportation systems. Uzbekistan is one of two countries in the world 

that needs to cross through two country borders to reach a sea or ocean shore. It is located 

in the middle of Central Asia and has the largest population among all the countries of 
Central Asia. Due to the reasons mentioned above and the geographical location of the 

country, the importance of the automotive road network (ARN), railways, and pipelines is 

hard to underestimate. According to the results of the inventory of the country, there are 

14331 bridge structures as of the beginning of 2019. Of these, 7628 (53.2%) are located on 

public roads, and 6703 (46.8%) are located on city roads, villages and on-farm roads [1].  

Seismic vibrations of structures are of a very complex spatial nature. With an intense 

seismic impact, leading to damage, the deformations of the structure go beyond the elastic 

limits and vibrations, as a rule, are not linear. However, in order to simplify the problem, 
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the normalized method for determining seismic forces is based on linear theory and allows 

independent consideration of three mutually perpendicular (vertical and horizontal) 

vibration components.  

Analysis of data on seismic damage showed that the impact of earthquakes of 

magnitude 7-9 on roads built according to normal standards leads to substantial damage to 

structures and serious disruptions to traffic, up to a complete cessation of traffic for a period 

of several days to several weeks. The failure of bridges during a possible earthquake can 

lead not only to the costs of restoration or construction of a new structure. The lack of 

transport access in emergency cases may complicate the work of rescuers and may lead to 

increased loss of human lives due to the delayed response [2-5].  

2 Methods 

The purpose of this article is to study the transverse vibrations of a two-span beam bridge, 

the pile part of which, under seismic action, interacts with the surrounding soil. 

Academician T. Rashidov developed a dynamic theory of seismic resistance of complex 

systems of underground structures, which is based on taking into account the difference in 

the deformations of the structure and the soil. On the problems of seismic resistance of 

underground and surface structures interacting with the surrounding soil in our country and 

abroad, a number of scientists worked [6-10].  

Based on the abovementioned, in the study of seismic vibrations of beam bridges in the 

first approximation, one limits themselves to considering only the transverse deformations 

of spans and supports. This is all the more acceptable since it is transverse deformations 
that play a decisive role in the formation of horizontal seismic forces. Consider a two-span 

reinforced concrete road bridge (Fig. 1).  

Consider a road two-span beam with three supports. As a first approximation, the bridge 

supports can be assumed to be immersed in the ground and interacting with a rigid body, 

and under the influence of non-stationary dynamic influences. Set the origin at point O and 

direct the Ox axis along the neutral axis of the beams, and the axis and Oy1 (with origin at 

point O1) is perpendicular to it (Fig. 2). Let a longitudinal wave flow around the supports, 

behind the front of which the movement of soil particles depends on the coordinate y1 and 

time t according to the law u0=u0(t–z/c0). The lateral surfaces of the extreme supports are in 

contact with the ground, and the middle support interacts with the ground only with the 

lower section [11].  
 

  

Fig. 1. Reinforced concrete road beam bridge Fig. 2. Calculation scheme for a road two-span 
beam bridge with movable supports 
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The deflections of the beams yi=yi(x, t) satisfy the equations  
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The deflections yi=yi(x, t) satisfy the boundary conditions  

where mb – is the linear weight of the girder, E – is the Young’s modulus of the material of 

the girder, Jz – is the moment of inertia of the section, l – is the length of the span  
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We denote by u1=y1(–l, t), u0=y1(0, t)=y2(0, t), u2=y2(l, t) the displacements of the supports 

interacting with the ground according to Winkler's law, which are the equations of motion  
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M1, M0, M2 – are the weights of the left, middle and right supports, respectively, ζ1=h1/h, 

h=h1+h2, h1, h2 – are the contact lengths of the end sections of the left and right beams with 

the middle supports, k12 and k22 – are the stiffness coefficients of the longitudinal shear on 

the contact surface, respectively, of the right and left supports with the ground, k11, k12 and 
k0 – are the coefficients of the elastic resistance of the soil in the lower sections of the 

supports, u0(t) – is the movement of soil particles behind the front of the incident 

longitudinal wave 
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H – is the height of the supports.  

The deflections of the beam, except for (8) – (10), at the points of conjugation with the 

supports, satisfy the condition of being kept in a horizontal position  
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Consider the case when the right and left supports have equal masses and interact with the 

surrounding soil according to the same laws. Then one should set y1(x, t)=y2(-x, t)=y(x, t), 

M1=M2=M, ς=1/2, k11=k21=k1 and k12=k22=k2 and use symmetry condition, it is enough to 

consider the equation of the right half of the beam, the equation of motion of which, taking 

into account conditions (9) and (10), can be written in the form  
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Moreover, the function y(x, t) satisfies the conditions  
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We introduce a new function by the formula  
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The function ),( ty   satisfies the inhomogeneous equation  EJlmm в /4

в    
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homogeneous boundary  
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and initial conditions 
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The initial boundary value problem (18) – (19) for equation (16) is obtained by the Fourier 

method, according to which the solution of the corresponding homogeneous equation can 

be represented in the form  
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We represent the solution of equation (21) in terms of the Krylov functions (Ci are arbitrary 

constants)  
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From conditions (21), (22) it follows  
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We equate the determinant of the system of equations to zero (23) – (25) with respect to, 

C1, C3 and C4, we compose an equation to determine the eigenvalues λ=λi. 

Setting C1=1, we represent the expressions for the eigen functions φi(ξ) in the form  
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It can be shown that the Eigen functions φi(ξ) satisfy the generalized orthogonally condition  
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We represent the solution of the inhomogeneous equation (16) as the sum 
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Putting expression (28) into equation (16), we obtain  
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Using the orthogonality condition (27), we compose an equation for the expansion 
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Equations (29) satisfy the initial conditions  
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The solution of equation (29) under the indicated initial conditions has the form: 
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Putting the expressions Tn(t) in series (28), we obtain solutions to the original problem in 

the form  
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3 Results and discussion 

Fig. 3, 4 and 5 shows the time variation curves of axial stresses in different sections of the 

beam of three types. Young’s modulus and moment of inertia in all beams are the same and 
correspondingly equal to E=3.45·104 MPa, Jz=0.023 m4. The movement of soil particles 

behind the wave front is determined by the law 






 


L

ytc
Au 0

0 sin , where c0=600 m/s 

is the propagation velocity of the longitudinal wave, A=0.005 m is the amplitude of the 

oscillations, L is the wave length. The calculations take L=50 м, L=100 м, L=150 м, 

L=200 м. The height of the supports for all bridges is assumed to be H=8 m. The 

coefficients of elastic compression of the soil in the lower part of the supports 

k0=k1=106 N/m, the coefficient of longitudinal displacement of the soil on the side surface 

of the right support k2=5·106 N/m.  

Fig. 3, 4 and 5 shows the dependence of the longitudinal stress on time in different sections 

for three types of beam  

Example 1. The beam has the following characteristics: l=12 m, m=300 kg/m3 
 

 

E3S Web of Conferences 401, 03070 (2023)

CONMECHYDRO - 2023
https://doi.org/10.1051/e3sconf/202340103070

7



L=50 m L=100 m 

  

 
L=150 m L=200 m 

  

Fig. 3. The dependence of the longitudinal stress on time t (sec) in different sections of the beam 

lxx /


: 2.0)(1  blackx , )(25.01 redx  , 5.0)(1  bluex , 75.0)(1  greenx , 

.1)(1  brownx  l=12 m, m=300 kg/m3 

 

Example 2. The beam has the following characteristics: l=15 m, m=350 kg/m3, 
 

L=50 m 
L=100 m 
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L=150 m L=200 m 

  

Fig. 4. The dependence of the longitudinal stress on time t (sec) in different sections of 

the beam lxx /


: 2.0)(1  blackx , )(25.01 redx  , 5.0)(1  bluex , 

75.0)(1  greenx , .1)(1  brownx  l=15 m, m=350 kg/m3  

 

Example 3. The beam has the following characteristics: l=18 m, m=350 kg/m3, 

 
L=50 m L=100 m 

 

 

 
L=150 m L=200 m 

  
Fig. 5. The dependence of the longitudinal stress on time t (sec) in different sections of the beam 

lxx /


: 2.0)(1  blackx , )(25.01 redx  , 5.0)(1  bluex , 75.0)(1  greenx , 

.1)(1  brownx  l=18 m, m=350 kg/m3  

 
From the analysis of the curves presented in Fig. 3, 4 and 5 it follows that the stress 
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changes over time in different cross sections qualitatively for all types of beams are close to 

harmonic. The greatest stress values over time are achieved in sections close to the edge 

sections of the beams, and with increasing wave length L, the nature of stress changes in 

different sections over time acquire the same character and their maximum values decrease. 

This indicates the regularity of the transition to the static state of the beam in the case of the 

action of a wave with a long length. For all types of beams presented in Examples 1, 2 and 

3, tensile stresses are acquired in cross sections, which are approximately twice as large as 

compressions.  

Thus, under the action of a sinusoidal seismic wave with a frequency of c0/L, maximum 

bending moments with a positive sign prevail in the beam sections and it can be expected 

that the destruction of the beam can mainly occur due to high values of tensile stresses in 
the sections of the elements in contact with the supports.  

4 Conclusions 

Bridge structures on highways are an important component of the unified transport system 

of Uzbekistan. Even partial destruction of several structures during earthquakes can lead to 

disruption of communication between settlements. Taking everything into account, the 

increase in the number and carrying capacity of motor vehicles, the issues of the 

development of earthquake-resistant structures of bridge structures are relevant. 

A method for calculating a two-span beam on the action of a sinusoidal longitudinal 

seismic wave with a front parallel to the axis of the beam, based on the application of the 

Fourier method, is proposed.  
According to the analysis of the results of calculations performed for three types of beams, 

it was found that the action of this type of seismic wave leads to the occurrence of tension 

and compression stresses in the cross sections, and the beams work more on tension. 

By analyzing the patterns of changes in the maximum stress values in the boundary sections 

of the beam, it has been that the stresses in these sections have a positive sign, which may 

be the cause of the rupture of the beams in these sections.  
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