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Abstract. When the input signal and the output value of the object of 
control cannot be measured accurately, the state vector is estimated. The 
instrumental variables (IVs) method is a commonly used parameter 
estimation method [1-10]. The task of adaptive observation is to create 
state observers containing parameter estimators. In adaptive observers, the 
matrices A and b or c (depending on the chosen canonical state-space 
representation form) are assumed to be unknown. In the monitoring 
process, parameter estimation is performed, the unknown matrices are 
determined, and then the state vector is calculated. The paper aims to 
present a non-recurrent adaptive observation algorithm for SISO linear 
time-invariant (LTI) discrete systems. The algorithm is based on the 
instrumental variables (IVs) method, and the adaptive state observer (ASO) 
estimates the parameters, the initial and the current state vectors of the 
discrete system. The algorithm's workability and effectiveness are proved 
by using simulation data in MATLAB/Simulink. 

1 Introduction 
To design control systems with state feedback, it is often necessary to recover the state 
vector by using measurements of the output and the input signals of the controlled object. 

For the reconstruction of the state vector, an implementation of a state observer is 
necessary. The process of adaptive observation involves the creation of an observer with a 
parameter estimator [11,12]. The matrices A and b or c (depending on the canonical form 
for representing the object in the state space) are considered unknown. 

During the observation process, the unknown parameters are estimated, the unknown 
matrices are determined, and the state vector is calculated. 

This paper presents a non-recursive algorithm based on the IVs method [13] for 
adaptive observation of SISO LTI discrete systems. 
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The parameters estimator in the adaptive observer is built based on a mathematical 
procedure with low computational complexity when inverting the information matrix 
presented in [14].

2 Problem Formulation
Consider a system which is mathematically described in the state space as follows:

(1)

where 

n-10 I
A

aT
(2)

(3) 

The system order n is a priori known, x(0) Rn is the unknown initial vector of state, x(k)
Rn is the unknown current vector of state, u(k) R1is a scalar input signal, y(k) R1 is a 
scalar output signal, f(k) is an additionally added noise signal, a and b are unknown vectors.

The state space description (1) corresponds to the following discrete transfer function: 

n-1 n-2
1 2 n-1 n

n n-1
n 2 1

h z +h z + +h z+hW(z)=
z - a z - - a z - a

n-1+h z+n 1n 1

2- a z - a2

(4) 

The elements ܾ݅ of vector ࢈ in the chosen phase-coordinate canonical form are 
calculated by the coefficients hi of the polynomial in the numerator and the coefficients ai
of the polynomial in the denominator of (4) as follows [15]:

ܾܶ = ℎ, (5)

where 
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The vector a elements ܽ݅ are the coefficients of the polynomial of the denominator of (4) 
and are presented in reverse order and have the opposite sign.
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The purpose is to evaluate the elements of the unknown vectors a and b, the initial 
vector x(0), and the current vector x(k), k=1, 2, …

3 Solution
A stage algorithm of the adaptive observer based on the method of instrumental 
variables (IVs)

A computational procedure of the algorithm, which consists of 12 stages, is developed 
and is shown below:

Stage 1. Formation of matrices and vectors from input-output data [16,17]:

u 0 u 1 u N - 21u , 

y 0 y 1 y N - 11y , 

N - ny n y n+1 y + n - 1
22y NNNyy

T
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2 23y yy

T
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where Y11, Y21, U12 and U22 are Toeplitz matrices and N=3n+2l,   l=1, 2, 3, ....
Stage 2. Calculate the sub-matrices G11, G12, G21, G22: 

11 11 11 21 21G Y Y Y YT T , 12 11 12 21 22G Y U Y UT T , 

21 12 11 22 21G U Y U YT T , 22 12 12 22 22G U U U UT T . 

Stage 3. Calculate the covariance matrix C: 

1 1 12 2 21 1 1 12 2

2 21 1 2

M M G M G M M G M
C =

M G M M

where 
1

1 11M = G , 1
2 22 21 1 12M = G G M G . 

Stage 4. Calculate the vector ĥ  and vector â  and form the estimated system matrix ࡭෡:

11 2 21 3

12 2 22 3

Y y Y y
p C

U y U y

T T

T Tˆ , 

n1 2 n 1 n 2 2nh h h p p ph h p p pn 1 n 2 2np pn 21 n1 n1 n1 n 2np p pn 1 n 21 n1 nnhnhhh
T Tˆ ˆ ˆˆ ˆ ˆ ˆ

, 

n n1 2 n 1 1a a a p p pa n n n 1 1a p p pn n n 1p pp pT Tˆ ˆ ˆ ˆ ˆ ˆ ˆ
, 

n-10 I
A

aT
ˆ

ˆ . 

Stage 5. Calculate vector b estimation by using the linear algebraic system of equations 
given below: 

Tb hˆ ˆ
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where  is a Toeplitz matrix of lower-triangular type.

Stage 6. Estimate the initial vector of state x0: 

  

(it is required det (DTD≠0), where 
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. 

Stage 7. Compute the output variable y(k) estimation:

TˆF̂ A gc . 

Stage 8. For the instrumental matrices V11, V21: 
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2 2 2

11V

NNy Ny Nyyyy

ˆ ˆ ˆ
ˆ ˆ ˆ
ˆ ˆ ˆ

ˆ ˆ ˆ

,
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Stage 9. Recalculate the submatrices G11, and G12: 

T T
11 11 11 21 21G V Y V Y , T T

12 11 12 21 22G V U V U . 

Stage 10. Recalculate the vector of the parameters - p: 

1
1 11M = G , 1

2 22 21 1 12M = G G M G , 

2 22 1 2

1 1 11 2 22 1 1 11 2

M G M M
C =

M M G M G M M G M

, 

T Tˆ ˆ ˆˆ ˆ ˆ ˆh Tˆ ˆ ˆ1 2 n n 1 n 2 2nh h h p p p , 

T Tˆ ˆ ˆ ˆ ˆ ˆ ˆa Tˆ ˆ ˆ ˆ1 2 n n n 1 1a a a p p p , 

n-10 I
A

aT
ˆ

ˆ

. 

Stage 11. Repeat stages 7 to 10 four times 

Stage 12. Estimate the current vector of state x(k):

k +1 k u k y k 0 0x Fx b g x xˆ ˆˆ ˆ , ˆ ˆ ,   F A gcTˆˆ . 

Vector g can be easily calculated by solving the so-called pole assignment problem (PAP), 
also known as a pole placement problem (PPP). The following options must be considered 
during the synthesis of vector g: the eigenvalues of the matrix F̂ must lay within the unit 
circle more inward than the eigenvalues of the matrix Â or must be zero. Implementing the 
options mentioned above guarantees good dynamic characteristics of the state observer. 

4 Simulation Results
A computer experiment is performed in MATLAB by performing the following steps: 

The system under investigation is given by a transfer function, with input signal u(k) 
and the respective output signal y(k); 
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To the system output is applied (added) colored noise signal f(k); 
As input data for the observation algorithm are used: the input signal u(k) and the 
noise-corrupted output signal y(k); 
The developed algorithm calculates the object parameters and the state vector 
estimates based on the input-output data sequences. 

For the simulations is used the discrete transfer function of the system investigated and 
presented as follows: 

 
 
and its corresponding state space representation: 

 

The MATLAB function eig (.) is implemented to obtain the matrix A eigenvalues: 
 

. 

 

As an input signal u(k) is used pseudo-random binary sequence (PRBS), which is 
generated by using the following MATLAB functions: u=(sign(randn(127,1)))*10. 

By adding a color noise f(k), the output signal y(k) is noise-corrupted. The following 
filter 
 

 
 

is used for filtering white noise to obtain the colored noise. 
The noise level ߟ is calculated by dividing the noise standard deviation ݂ߪ to the output 

signal standard deviation ݕߪ following the following equation: 
 

σ
η %

σ
f

y

100 = 0 ÷ 10
.

 (6) 

 
Vector a estimation error ea, vector b estimation error eb, and the state vector x(k) 
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estimation error ex are relative mean squared errors (RMSE) and could be determined by 
the equations given below: 

n
2

i=1
n

i=1

i i

a

i

a (k) a (k)
e (k)

a (k)

ˆ ,
n 2

i=1
n

i=1

i i

b

i

b (k) b (k)
e (k)

b (k)

ˆ
,

n
2

i=1
n

i=1

i i

x

i

x (k) x (k)
e (k)

x (k)

ˆ .(7)
 

In Fig.1 are presented the results for the case of the noise-free output signal (f(k)=0), ݈ = 0, N=3n=18). With these settings, the algorithm will start working at the 18th clock 
cycle, and in this case, in particular, the observation errors ea(k), eb(k), and ex(k) are equal to 
zero. 

Fig. 1. RMSE for the noise-free output signal case 

In the noise-corrupted output signal case, an experiment is held for noise level ߟ = 10.018% 
and ܰ = 3݊+2*40 = 98 (݈ = 40). The results are presented in Fig.2. Under the described 
above initial settings, the algorithm will start working at the 98th calculations step, and the 
RMSE is as follows: ea(k)<0.033, eb(k)<0.01, ex(k)<0.065.
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Fig. 2. RMSE for the noise-corrupted output signal case: an experiment is held for noise level ߟ = 10.018%, N=98

When the output signal is noise-corrupted with noise level ߟ = 10.014% and ܰ = 3݊ + 2*100 = 218 (݈ = 100). The results are: the algorithm starts at the 218th step of the 
calculations and the RMSE are: ea(k)<0.017, eb(k)<0.0057, ex(k)<0.024, при 218<k>400 
ex(k)=0.01 (shown in Fig.3).

Fig. 3. RMSE for the noise-corrupted output signal case: an experiment is carried out for noise level ߟ = 10.014%, N=218

The results obtained by the computer experiment and the analysis of the graphs lead to the 
conclusion that as the number of input-output measurements (ܰ) increases, the invariance 
of the algorithm against added noise increases proportionally, but the time required to 
collect the initial data set increases.
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5 Conclusions
The proposed algorithm implements the IVs method to estimate system parameters, which 
are the basis for further reconstruction of the current state vector. Only at the zero iteration 
the Least-Squares Method (Stage 1 to Stage 4 of the suggested calculation procedure) is 
used. 

The developed algorithm also estimates the initial state vector x0, which allows the 
matrix of instrumental variables to be formed even under non-zero initial conditions. 

The obtained results show that the number of input-output data measurements (ܰ) is of 
great importance in terms of the accuracy of the estimations in the case of a noise-corrupted 
output. The highest accuracy should be expected for the highest number of ܰ (Fig.2, Fig.3). 

The method of the IVs guarantees the best results in the case of a priori collected data 
estimation [16,17]; however, concerning the closed-loop system, the added noise f(݇) is 
applied to the input signal through the feedback. Hence invariance between the instrumental 
matrices and the added noise is not possible. Implementing the IVs method to investigate 
the closed-loop system is only applicable if the additional input signal is applied [17-19]. 
Thus, implementing the algorithm proposed in the present work is not recommended for 
closed systems. 

The convergence of the iterative procedure in the AO algorithm based on the IVs 
method proposed in the present paper is ensured by implementing the non-recurrent method 
[13,20]. 

However, this algorithm's main advantage is related to the method used to form the 
informative matrix. The four sub-matrices Y11, Y21, U12, and U22 are used for the formation 
mentioned, which leads to reducing in the calculation complexity of the matrix G (formed 
by the sub-matrices G11, G12, G21, G22.) inversion procedure. Regardless of the number ܰ 
for the coefficients, hi and ai estimation inversion of the matrices G11 and (G22-G21M1G12), 
which are always (n x n) dimensional, is only needed. In all other cases, this procedure 
requires a matrix that is at least (N-n) x (N-n) dimensional to be inverted. 
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