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Abstract. Soil medium changes its structure and deforms when the 

actuating tool of an agricultural machine interacts with the soil. The effect 

of soil on the performance of the actuating tool can be taken into account 

through soil density and tensile strength. The model of a plastic medium 

proposed by Academician Kh.A. Rakhmatulin and simplified equations 

obtained based on the hypothesis of plane sections were used to describe 

the movement of soil near the point under finite deformations. It was stated 

that, depending on the coefficient of internal friction and cohesion of soil, a 

zone of high soil density could form near the actuating tool of the subsoiler 

ploughshare, where a significant increase in the resistance force is 

observed. 

1 Introduction 

The formulation of research work based on modern scientific achievements and related to 

the study of increasing the productivity and reliability of machines at the operating stage is 

becoming increasingly important worldwide in agricultural production for developing 

complex mechanization of cotton growing [1, 2]. The development of energy-resource-

saving agricultural (in particular, soil-cultivating and cotton harvesting) machines with 

high-quality work and efficiency is closely related to the problems of studying vibrations of 

parts and assembly units, which cause vibration and dynamic strength of machines as a 

whole [3, 4]. 

Special attention is paid to various physical and mathematical models for studying the 

behavior of soils under static and dynamic influences associated with the movement of 

tools in the soil medium, which is an objective necessity. Establishing the patterns of 

interaction between a rigid body and soil based on solving the problems of projectile entry 

(penetration) into the soil [5, 6], the landing of an aircraft, driving piles, and many others is 

related to determining the contact force (of resistance) on the surface of the body. 

As is well known, soils differ in structure, shape, packing of solid particles, water, and 

air content. Consequently, this is a great variety of mechanical properties of soils under 

dynamic and static impacts. This explains the difficulties in practice associated with 

determining the pattern of motion of rigid bodies in soil, where an essential role belongs to 

soil's physical and mechanical properties. 
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According to previous studies, it was established that long-term rotary tillage hurts the 

surface layer of soil, and due to global climate change, water supply in agriculture is 

becoming increasingly problematic. When loosening a dense subsoil layer to a depth of up 

to 60 cm due to water consumption, the soil's water permeability and moisture capacity 

increase significantly; this makes the lateral roots of plants develop better, and the crop is 

heavy [7-9]. 

It should be noted that the previously developed technological schemes for tillage and 

the corresponding designs of the actuating tool of the subsoiler ploughshare, operating 

under conditions of unlatched cutting of soil [10], experimental methods for studying the 

behavior of soils under static and dynamic impacts [11, 12], and the proposed soil models 

using the discrete element method [13] have made it possible to achieve certain success in 

solving problems of the dynamics of bodies moving in a soil medium. 

As a rule, in solving applied problems, the soil is modeled as a multi-component 

continuous medium, the motion of which is characterized as an ideal fluid or an elastic 

(multi-component) medium. Such a model can describe the movement of water-saturated 

soils [14]. For soils of low or medium moisture content, consisting of solid particles and air 

inclusions, the presence of large volumetric irreversible deformations and the presence of 

shear deformations are significant. Such soils are considered as a plastic compressible 

medium. The theory of elastic and elastoplastic models covers a wide range of constitutive 

models for solids and liquids found in the scientific literature and used in many applied 

problems related to porous media saturated with liquid [15]. An improved method was 

developed using a hydro-mechanical finite element model to better understand soil structure 

behavior and make the substructure design process more practical. This model was 

substantiated by some case studies, one of which confirmed the ability to simulate soil 

movement and substructure deformation, the other - the ability to model by the method of 

discrete elements to determine the traction force during tillage depending on the speed, 

tillage depth, moisture content, and soil compaction [16, 17]. 

2 Methods 

As a result of the movement of a rigid body (subsoiler ploughshare) in the soil medium, the 

soil is deformed, and a time-varying resistance force arises on the contact surface of the 

rigid body and the moving part of the medium. The value of this force primarily depends on 

the dynamic structure of the soil, which is subject to constant changes due to a wide range 

of biotic and abiotic factors such as biodegradation and mechanical disturbance of soil, 

considered in [18, 19] and the design features of the tillage machine [20]. The parameters of 

the power capabilities of machines are ultimately determined by the interaction pattern of 

their actuating tools with the tilled soil medium. Therefore, in theoretical terms, the choice 

of a model for the interaction process between the soil and the actuating tools of a tillage 

machine is of particular importance. 

In the case of a compressible plastic medium, the "plastic gas" model of Kh.A. 

Rakhmatulin was used, according to which the soil under loading changes its density by a 

certain law; under unloading, it retains the density obtained under loading. To compile the 

equation of motion of soil, the "hypothesis of plane sections" proposed by A.A. Ilyushin 

was used, according to which soil particles perform radial motions in a plane perpendicular 

to the axis of symmetry of a rigid body (a cone). In this case, the body motion problem is 

reduced to studying the motion of a compressible plastic medium with cylindrical 

symmetry [21]. 
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Fig. 1. Schematic presentation of a subsoiler ploughshare in a linear-elastic medium 

 

It was determined that for each value of the density ratio behind the shock wave front, 

which is assumed to be constant, to the initial density, there is an initial velocity at which 

the rigid body begins to move. With an increase in this ratio, which corresponds to a more 

compacted initial state of the soil, the value of this velocity also increases. 

The actuating tool of the machine – a subsoiler ploughshare – is taken as a thin, rigid body 

in the form of a curvilinear wedge of length l with a symmetrical profile   relative to the 

Ox–axis and  moving in soil at a constant velocity of V0  in the direction opposite to the Ox–

axis (Fig. 1). 

The soil medium is modeled as an unbounded homogeneous linear elastic medium. The 

following expressions were obtained for the case of a thin wedge, for the stress tensor 

components σ22 and σ12 at an arbitrary point of an elastic medium [22]. 
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k is replaced by   and  , )(1 p  is a function describing the solid profile. 

In the case of a circular cone, the displacements u1(r1,x1) and w1(r1,x1) are determined by 

the following formulas 
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propagation velocities of longitudinal and transverse waves, respectively, (λ1, μ1 are the 

Lame constants, ρ is the density of the medium, ν0 is the Poisson ratio), K0 (z), K1 (z) are the 

Bessel functions of the imaginary argument of zero and first orders. Function Г(р), included 

in formulas (3) and (4), is written as 
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where f (x1) is the function that satisfies the boundary conditions in the linear 

approximation at small angles between the tangent to the body profile, and the Ox–axis, γ 

(x1) is the function that describes the body profile. 

Expressions for stresses σ22 and σ12 are determined according to Hooke's law. In the 

disturbed region, the values of the stress tensor and the contact force of interaction between 

the soil medium and the body (a subsoiler ploughshare) can be determined. 

3 Results 

Let the subsoiler ploughshare be represented as a sharp wedge with two identical triangular 

side faces with an acute apex angle λ (Fig. 2, a). 

Then the surface area of the subsoiler ploughshare Swedge in the form of a wedge-shaped 

body can be determined by the following formula
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where hpl  is the height of the subsoiler ploughshare, βpl  is the angle of the chisel point to 

the base, λ is the angle at the top of the wedge. 

 

 
 

a) b) 

Fig. 2. Schematic representation of a subsoiler ploughshare in the form of a thin wedge (a), and 

reduced circular cone (b) 

 

Let us replace the wedge-shaped subsoiler ploughshare with a reduced circular cone (Fig. 2, 

b). Denoting the height and angle at the vertex of the circular cone by hcone and 2βpl, 

respectively, we obtain a formula for determining the surface area Scone in the following 

form 
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In particular, if the heights of the subsoiler ploughshare and the circular cone are taken 

as equal, that is, hpl  = hcone = h, then by equating formulas (5) and (6), we obtain a relation 

for determining angle βcone in the following form 
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Figure 3 shows graphs of curves that describe the dependence of angle βcone on the angle λ 

for various values of βpl. 

 

1 - 
05pl ; 2 - 

010pl ; 3 - 
015pl ; 4 - 

020pl   

Fig. 3. Dependence of semi-vertex angle of cone βcone (in radians) on λ, at different values of angle βpl  

(in degrees) 

 

Analyzing the curves in Fig. 3, we see that the change in the vertex angle βcone of the cone 

for different values of angle βpl is insignificant. In addition, a significant increase in angle 

βcone of the opening of the cone is observed at large angles λ between the side faces of the 

chisel point. 

Consider an arbitrary section of the cone at time t1, L1 = L(t1) (Fig. 1). Let at the point of 

contact of the vertex of the cone in the considered section at time t=t1  a cylindrical 

compression wave is initiated in soil [21], and at time t>t1 the boundary of the region of 

disturbed soil motion is bounded by the radii of the cylindrical wave r = *r (t) and radius 

r = L(t)·tgβ (β = βcone is the angle at the vertex of the circular cone), which is the line of 

intersection of the surface of the cone with the plane under consideration.  

Let us assume that the soil density changes only at the front of a cylindrical wave and is 

determined by the intensity of this wave. Therefore, the soil density in the disturbed region 

is only a function of the coordinate r and does not depend on time t. Let r be a variable 

Lagrange coordinate. Then the equation of motion and continuity in cylindrical coordinates 

in an arbitrary section L = L1 has the following form 
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where r  is the initial distance of the particles from the axis of the cone, u = u (r,t)  is the 

displacement of the soil particles at this distance, t is time, ρ0 and ρ are the initial and 

current soil densities, respectively, in the disturbed area L1 < r < 
*r (t), σr and σθ  are the 

radial and tangential stresses, respectively. Since the soil is modeled by a plastic 

(irreversible) medium [5], the stresses satisfy the Mohr-Coulomb plasticity condition [20] 
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where τ0 = 2k·cosθ and μ = sinθ, k  is cohesion, θ is the angle of internal friction. 

Eliminating σθ from equation (8), we reduce it to the following form 
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Here ν = 2μ/(1+μ). Multiplying both sides of equation (11) by function (r+u)
ν-1 

and 

integrating over the Lagrangian variable r, we obtain 
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where R = V0t·tgβ  is the radius of the inner boundary of the disturbed region at zero 

Lagrange value r at an arbitrary time point. 

Let us denote the stress at the front of a cylindrical wave r  = *r (t) by σr
*
= σr ( *r ,t), 

where the displacement of particles is zero. Then equation (12) at the front r = *r (t) is 

written as 
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Subtracting (13) from (12), we obtain 
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Considering the time independence of the density in the disturbed region, we integrate 

the continuity equation (9) 
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At a constant cone velocity, we have L = V0t (R = V0t·tgβ). Then, from the known law 

ρ = ρ(r), from formula (16), it is possible to determine the pattern of displacements of the 

cylindrical wave front r = *r (t). 

Differentiating (15) concerning time, we find the velocity and acceleration of soil 

particles in the disturbed region L1 < r < *r (t) 
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where R = V0t·tgβ , Ṙ = V0·tgβ . 

The velocity of soil particles at the wave front is determined from expression (17), 

where it is assumed that r = *r (t) 
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To determine the stress at the wave front σr = σr
*, 

we use the mass conservation law and 

the momentum theorem [23] 
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where D  is the velocity of the leading front of the cylindrical wave, ap  is the pressure 

ahead of the compression wave. From (20) and (21), we find the velocity of wave D  and 

stress σr
* 
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Substituting the particle acceleration and expression σr
*
 from (19) and (21), 

respectively, into (14), the stress in the disturbed region is determined as 
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By substituting expression (15) into formula (22), it is possible to determine the 

spatiotemporal distribution of stresses in the disturbed region, where it is necessary to 

assume that the experimentally determined function ψ(r) is known. If we consider the wave 

propagation process over a short period, then we can assume that the soil density behind the 

wave front is constant and equal to ρ = ρ1 = const. Assuming that r = 0, u = R(t), we obtain 

an explicit expression for stress p1 = – σ  on the surface of the cone 
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where b1 = ρ / ρ1,  x = L – L1,  υ(ν,b1) = (
2/a –1) / ν, a  = 1 / (1–b1). 

 

Based on the known values of stresses σyy and σxy, determined according to Hooke's law, 

and the pressure p1 on the body surface according to formula (23) and integrating them, the 

contact force of interaction between the soil environment and the body can be determined. 

As noted above, the value of the contact force of interaction (resistance force) depends 

on the chosen model of soil medium and the configuration of the body. The total resistance 

force acting on the surface of the subsoiler ploughshare (a circular cone) is calculated using 

the following integral [20]: 
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where μ0  is the coefficient of friction between the soil medium and the cone's surface, h is 

the height of the cone. Equation (24) is integrated numerically under zero initial conditions: 

L = 0 and L = 0, at t = 0. Integrating equation (1), with R = L·tgβ, we obtain: 
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Let us assume that a subsoiler ploughshare, represented as a circular cone, performs a one-

dimensional movement in the soil medium along the cone's axis. Let the movement of the 

chisel point be realized through an elastic element rigidly coupled to the strut of the 

subsoiler ploughshare moving at constant velocity V0. In this case, the equation of motion 

of the subsoiler ploughshare in the form of a circular cone, considering expression (24), is 

described by the following formula 
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where k0 is the stiffness coefficient of the elastic element. 

Figures 4–5 show the subsoiler ploughshare displacement L(m) dependences on time t 

(sec) for various values of the stiffness coefficient k0  and the ratio b1 = ρ0 / ρ1 for the initial 

stages of movement. 

 
b1 = 0.2 

 
b1 = 0.8 

Fig. 4. Change in displacements of the subsoiler ploughshare L(t) (m) on time t (sec), for  

k0  = 50 H/m for different values of b1 = ρ0 / ρ1 
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b1 = 0.2 b1 = 0.8 

Fig. 5. Change in displacements of the subsoiler ploughshare L(t) (m) on time t (sec), for k0 = 200 

H/m for different values of b1 = ρ0 / ρ1 

 

Figures 6 – 7 show the dependences of elastic force P(t) = k0 (V0t – L)  on time for two 

values of the stiffness coefficient k0 for different values of b1 = ρ0 / ρ1. 

 

                 
b1 = 0.2 

                         
b1 = 0.8 

Fig. 6. Change in elastic force P(t) on time t (sec), at k0 = 50 N/m for different values of b1 = ρ0 / ρ1 

 

 
b1 = 0.2 

 
b1 = 0.8 

Fig. 7. Change in elastic force P(t) on time t (sec), for k0 = 500 N/m for different values of  b1 = ρ0 / ρ1 
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4 Discussions 

It is seen (Figs. 4, 5) that with an increase in the stiffness coefficient k0, the subsoiler 

ploughshare performs high-frequency oscillations with increasing amplitude. With an 

increase in the compaction parameter b1 = ρ0 / ρ1, the oscillation period also increases, 

while the amplitude for small values of k0 first decreases (for b1 = 0.2) and then increases 

with an increase in this parameter. At large values of the stiffness coefficient k0, the 

oscillation amplitudes for all values of the soil compaction parameter b1 = ρ0 / ρ1 are almost 

the same; their increase is observed for b1 = 1. 

From the analysis of the curves given in Figs. 6, 7, it follows that the elastic element in 

the process of movement of the subsoiler ploughshare is, to a greater extent, in a state of 

compression, the value of which also increases with an increase in the value of b1 = ρ0 / ρ1. 

However, the stiffness coefficient practically does not affect the oscillation amplitude. 

5 Conclusions 

The results obtained and their analysis allow us to formulate the following main 

conclusions: 

1. To describe the dynamics of cultivated soil, a model of a compressible plastic 

medium was chosen under the Coulomb-Mohr plasticity condition. Based on the 

calculations performed using this model, it was found that the value of the contact force of 

interaction depends on the chosen model of the soil medium and the configuration of the 

body. 

2. Based on the model of a compressible plastic medium and the "plane section 

hypothesis", an analytical and numerical method was presented for solving the equation of 

motion of a subsoiler ploughshare in the form of a circular cone, which is rigidly connected 

to the subsoiler strut through an elastic element and moves in the soil medium at a constant 

velocity. 

3. Analysis of the results obtained shows that with an increase in the stiffness 

coefficient, the subsoiler ploughshare performs high-frequency oscillations at increasing 

amplitude; that is, the elastic element during the movement of the point is in a state of 

compression, the value of which also increases with the growth of the soil compaction 

parameter. However, the stiffness coefficient practically does not affect the oscillation 

amplitude. 
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