Determination of flight time of particle after reflection from lid of mixing chamber of mixer

Farmon Mamatov ${ }^{1,2^{*}}$, Eshpulat Eshdavlatov ${ }^{1}$, Z. Yarieva ${ }^{3}$, Tuygun Alikulov ${ }^{1,2}$, and Akmal Eshdavlatov ${ }^{1}$
${ }^{1}$ Karshi Engineering-economics Institute, Karshi, Uzbekistan
${ }^{2}$ Karshi Institute of Irrigation and Agro technologies of the "Tashkent Institute of Irrigation and Agricultural Mechanization Engineers" National Research University, Karshi, Uzbekistan
${ }^{3}$ Tashkent State Pedagogical University, Tashkent Uzbekistan

Abstract

An improved design of the continuous mixer cover is proposed. The mixer cover has reflectors mounted on the work surface and made as plates. The reflectors are positioned at an acute angle to the working surface of the mixer lid. The top of the reflector is facing in the direction opposite to the direction of movement of the feed particles. The aim of the study is the theoretical study of the trajectory of the feed particles to determine the axial velocity of the feed mixture in the free space of the mixing chamber of the continuous mixer. The trajectory of the feed particles in the mixing chamber of the mixer has been studied. The equations for determining the flight time of the particle after reflection from the lid of the mixing chamber of the mixer are obtained.

1 Introduction

Currently, two feeding technologies have become widespread: separate feeding of each of the components of the diet and feeding with feed mixtures [1]. In recent years, feeding with feed mixtures has become increasingly widespread. From a zootechnical point of view, it is important not only to introduce the components provided by the diet into the composition of the feed mixture in the required ratio, but it is also necessary that all of them are evenly distributed throughout the entire volume of the mixture [2-8]. The uniformity of the mixture ensures the same nutritional value of the feed in all parts of its volume. The final operation of preparing feed mixtures is mixing components in special devices - mixers [9].

Of great importance for improving the efficiency of the preparation of feed mixtures is the choice of the mixing method and the device for its implementation [10].

2 Methods

Based on the analysis of the influence of the mixing chamber shape on the technological process [1-5], it can be assumed that the presence of free space between the lid and the mixer's working body ensures chaotic movement of feed particles after the feed mass hits the

[^0]lid, which improves mixing conditions. It is advisable to provide the mixing chamber with a lid of such a shape that would ensure the dismemberment of the thrown feed mass and direct the movement of the reflected particle along with the rotation of the screw.

The proposed design of the continuous mixer lid is equipped with reflectors that change the trajectory of the feed particle in the mixer mixing chamber (Fig.1). Here, the directions of the trajectory of the feed particles largely depend on the angle of inclination of the working surface of the lid relative to the horizontal (angle α) and the angle of inclination of the reflecting plane of the reflector relative to the working surface of the mixer lid (angle ρ).

The presence in the proposed mixer design of a multi-entry screw with turns alternately interrupted by the size of one step and free space in the upper part of the mixer body contributes to the tossing of feed particles and, accordingly, lengthening the trajectory of its movement. This takes a certain amount of time, which affects the value of V_{n}.

The axial velocity V_{n} can be determined by the formula:

$$
\begin{equation*}
V_{n}=\frac{s}{T}, \tag{1}
\end{equation*}
$$

where T is the total time of passage of the feed particle along the length of one step of the turn, C.

The value of T, according to Fig. 1 is equal to

$$
\begin{equation*}
T=T_{1}+T_{2}+T_{3}+T_{4} \tag{2}
\end{equation*}
$$

where T_{1} is the time of movement of particles along the winding of the screw (path EA), $\mathrm{c} ; T_{2}$ is the time of flight of particles when they are tossed (path AB, VC), $\mathrm{c} ; T_{3}$ is the time of movement of particles with the screw after their reflection (path $K C$), c ; T_{4} is the delay time of particles due to the presence of displacement between adjacent screw windings, C.

Fig. 1. Mixer with reflectors on the working surface of the lid: 1 is housing; 2 is screw; 3 is the vertical wall of the lid, 4 is the working surface of the lid, 5 is reflecting plane of the reflector, 6 is the vertical wall of the reflector, 7 is cover

To determine the flight time T_{2} of a particle thrown from point A, we assume that when the particle approaches point A, the friction between the particle and the screw turns disappears, as well as the friction between the particle and the casing. At this time, the longitudinal velocity of the particle V_{n} decreases sharply; therefore, it could be assumed that
the particle is thrown perpendicular to the radius of the screw, i.e., during flight, it does not make a longitudinal movement.

Neglecting the air resistance, we assume that the particle is absolutely elastic; that is, the recovery coefficient K_{p}, when the particle hits the lid, is equal to one ($K_{p}=I$). Then along the flight path of the particle shown in Fig.2. it is possible to determine the flight time T_{2}

$$
\begin{equation*}
T_{2}=t_{21}+t_{22} \tag{3}
\end{equation*}
$$

where t_{21} is the flight time of the particle when tossed, with; t_{22} is the flight time of the particle after reflection, s.

In our previous studies [1-4], it was found that when the working surface of the proposed mixer lid is at an angle α to the horizontal plane, the thrown particles are reflected from the working surface of the lid (the side of the sun) and are directed to the right side, that is, along with the rotation of the screw. In this case, the reflected particles transfer their kinetic energy to the screw, thereby reducing the energy consumption for mixing [3, 4]. In this case, the particles reflected from the lid do not move in the longitudinal direction. As a result, it does not affect the performance of the mixer. To solve this problem, in the wellknown mixer design, the working surface of the mixer lid is equipped with reflectors made in the form of plates installed sequentially above the screw, each of which is located at an acute angle to the working surface of the mixer lid. The top of the reflector is facing in the direction opposite to the direction of feed movement. The feed particles thrown by the screw turn are reflected from the reflector and fly with the trajectories of transverse and longitudinal movement in the direction of unloading the finished feed mixture. The longitudinal movement of the particle increases the axial speed of the feed mixer, which affects the productivity of the mixer.

Fig. 2. Schemes of particle motion with trajectories of longitudinal and transverse displacement
Fig. 2 shows that with a change in the angle of inclination of the reflecting plane of the reflector relative to the working surface of the mixer lid, it is possible to change the direction of the trajectory of the reflected particles from the reflecting plane of the cover reflector. By changing the trajectory of the reflected particles, it is possible to change the meeting point of the particles with the screw in the opposite direction, the ejection zone, and the longitudinal movement in the direction of unloading the finished feed mixture.

3 Results and discussion

In [3], the case is considered when the particles move in the $O x z$ plane; that is, the movement occurs only along the cross-section. The proposed design of the continuous mixer lid is equipped with reflectors that change the trajectories of feed particles in the mixing chamber of the mixer (Fig.3). In this case, the direction of the trajectory of feed particles depends largely on the angle of inclination of the reflecting plane of the reflector relative to the working surface of the mixer lid.

Fig. 3. Diagram of the trajectory of a particle in the oxyz space
Let's consider the most general case when the reflected particles from the lid move in the Oxyz space. Let's make up the equation of motion of a particle with an initial velocity numerically equal to v_{p}, that is, $\left|\bar{v}_{\mathrm{\Pi}}\right|=\left|\bar{v}_{z}\right|$, directed along a vector that forms an angle α with the $\mathrm{O} z$ axis, in turn, another component of the vector v_{xy} in the plane Ohu v_{x} forms an angle p with the Oh axis (Fig.3.), provided that the particle is absolutely elastic, that is, $K_{p}=1$.

Thus, the velocity v_{o} is decomposed into three components: v_{x}, v_{y} and v_{z}, which are directed along the corresponding x, y, and z axes and have the following numerical values: $v_{x}=v_{o} \sin \alpha \cdot \cos \rho, v_{y}=v_{o} \sin \alpha \cdot \sin \rho$ and $v_{z}=-v_{o} \cos \alpha$. Since the velocity of the particle v_{0} at point B has components $v_{x y}=v_{z 1} \cdot \sin \rho$ and $v_{z 2}=-v_{z 1} \cdot \cos \rho$.The component $v_{x y}$ can be considered as the sum of $\overline{v_{x}}$ and $\overline{v_{y}}$, which are determined by the following expressions $v_{x}=v_{x y} \cdot \cos \rho$ and $v_{y}=v_{x y} \cdot \sin \rho$. The initial conditions for such a choice at point B look like this.

$$
\begin{gather*}
\text { By } \quad \begin{array}{c}
t_{20}=0 ; X_{20}=0 ; Y_{20}=0 ; Z_{20}=H \\
v_{x 20}=v_{z 1} \cdot \sin \alpha \cdot \cos \rho \\
v_{y 20}=v_{z 1} \cdot \sin \alpha \cdot \sin \rho \\
v_{z 20}=-v_{z 1} \cdot \cos \alpha
\end{array} \tag{4}
\end{gather*}
$$

Let's make up the differential equations of motion of a particle at an arbitrary point V of the Oxyz space, which moves only under the action of gravity $G=m g$, which is directed vertically downward.

$$
\begin{align*}
& m \frac{d v_{x 2}}{d t_{22}}=0 \tag{6}\\
& m \frac{d v_{y z}}{d t_{22}}=0 \tag{7}\\
& m \frac{d v_{z 2}}{d t_{22}}=-m g \tag{8}
\end{align*}
$$

Or considering that

$$
\begin{equation*}
v_{x 2}=\frac{d x_{2}}{d t_{2}}, \quad v_{y 2}=\frac{d y_{2}}{d t_{2}}, \quad v_{z 2}=\frac{d z_{2}}{d t_{2}}, \tag{9}
\end{equation*}
$$

We get

$$
\begin{align*}
& m \frac{d^{2} x}{d t^{2}}=0 \tag{10}\\
& m \frac{d^{2} y}{d t^{2}}=0 \tag{11}\\
& m \frac{d^{2} z}{d t^{2}}=-m g \tag{12}
\end{align*}
$$

Multiplying equations (6), (7), and (8) $d t_{22}$, previously dividing them by $m \neq 0$, we obtain

$$
\begin{align*}
& v_{x 2}=C_{1}^{1} \tag{13}\\
& v_{y 2}=C_{2}^{1} \tag{14}\\
& v_{z 2}=-g t_{22}+C_{3}^{1} \tag{15}
\end{align*}
$$

To determine the integration constants C_{1}^{1}, C_{2}^{1} and C_{3}^{1} and $t_{22}=0$, we use the initial conditions (1) and (2), according to which for $t_{22}=0$,

$$
\begin{gathered}
v_{x 20}=v_{z 1} \cdot \sin \alpha \cdot \cos \rho \\
v_{y 20}=v_{z 1} \cdot \sin \alpha \cdot \sin \rho \\
v_{z 20}=-v_{z 1} \cdot \cos \alpha
\end{gathered}
$$

Substituting these initial conditions (13), (14), and (15), we get

$$
\begin{align*}
& C_{1}^{1}=v_{x 2}=v_{z 1} \cdot \sin \alpha \cdot \cos \rho \tag{16}\\
& C_{2}^{1}=v_{y 2}=v_{z 1} \cdot \sin \alpha \cdot \sin \rho \tag{17}\\
& C_{2}^{1}=v_{z 2}=-v_{z 1} \cdot \cos \alpha \tag{18}
\end{align*}
$$

So we have

$$
\begin{aligned}
& v_{x 2}=v_{z 1} \cdot \sin \alpha \cdot \cos \rho \\
& v_{y 2}=v_{z 1} \cdot \sin \alpha \cdot \sin \rho
\end{aligned}
$$

$$
\begin{equation*}
v_{z 2}=-g t_{22}-v_{z 1} \cdot \cos \alpha \tag{19}
\end{equation*}
$$

Given (6), we have

$$
\begin{align*}
& \frac{d x_{2}}{d t_{22}}=v_{z 1} \cdot \sin \alpha \cdot \cos \rho \tag{20}\\
& \frac{d y_{2}}{d t_{22}}=v_{z 1} \cdot \sin \alpha \cdot \sin \rho \tag{21}\\
& \quad \frac{d z_{2}}{d t_{22}}=-g t_{22}-v_{z 1} \cdot \cos \alpha
\end{align*}
$$

Multiplying equations (20), (21), and (22) $d t_{22}$ and integrating, we have

$$
\begin{align*}
& X_{2}=v_{z 1} \cdot \sin \alpha \cdot \cos \rho \cdot t_{22}+C_{4} \tag{23}\\
& Y_{2}=v_{z 1} \cdot \sin \alpha \cdot \sin \rho \cdot t_{22}+C_{5} \tag{24}\\
& Z_{2}=-\frac{g t_{22}^{2}}{2}-v_{z 1} \cdot \cos \alpha \cdot t_{22}+C_{6} \tag{25}
\end{align*}
$$

Substituting into these equations the initial conditions (1), according to which for $t_{20}=$ $0, x_{20}=0, \quad y_{22}=0, \quad z_{22}=H$

$$
\begin{aligned}
& C_{4}=x_{20}=0 \\
& C_{5}=y_{20}=0 \\
& C_{6}=z_{20}=H
\end{aligned}
$$

Given these data (23), (24), and (25), we find the law of motion (trajectory) of the particle

$$
\begin{align*}
& X_{2}=v_{z 1} \cdot \sin \alpha \cdot \cos \rho \cdot t_{22} \tag{26}\\
& Y_{2}=v_{z 1} \cdot \sin \alpha \cdot \sin \rho \cdot t_{22} \tag{27}\\
& Z_{2}=-\frac{g t_{22}^{2}}{2}-v_{z 1} \cdot \cos \alpha \cdot t_{22}+H \tag{28}
\end{align*}
$$

here t_{22} - is the flight time of the feed mixture particle from point B arbitrary to point M.
To find t_{22} the flight time of the feed mixture particle from point B to point E_{1}, we use in formulas (26), (27), and (28) the coordinates of the last point E, which has coordinates

$$
\begin{gather*}
X_{2 E}=2 r, V_{2 E}=S / 2, \quad Z_{2 E}=0 \\
2 \mathrm{r}=v_{z 1} \cdot \sin \alpha \cdot \cos \rho \cdot t_{22} \tag{29}\\
\mathrm{~S} / 2=v_{z 1} \cdot \sin \alpha \cdot \sin \rho \cdot t_{22} \tag{30}\\
0=-\frac{g t_{22}^{2}}{2}-v_{z 1} \cdot \cos \alpha \cdot t_{22}+H \tag{31}
\end{gather*}
$$

Thus, we have obtained 3 equations for determining t_{22}, α and ρ From the formulas (29) and (30), we find t_{22} which is equal to

$$
\begin{equation*}
t_{22}=\frac{2 r}{v_{Z} \cdot \cos \rho \cdot \sin \alpha}, t_{22}=\frac{s}{2 v_{Z} \sin \alpha \cdot \sin \rho} \tag{32}
\end{equation*}
$$

Equating the right parts, we get

$$
\begin{equation*}
\operatorname{tg} \rho=\frac{s}{4 r} \tag{33}
\end{equation*}
$$

The validity of this formula can be shown in Fig. 3

$$
\begin{equation*}
\operatorname{tg} \rho=\frac{C C_{1}}{B C_{1}}=\frac{S / 2}{2 r}=\frac{S}{4 r} \tag{34}
\end{equation*}
$$

In addition, from Fig. 3 it can be shown that

$$
\begin{equation*}
\cos \alpha=\frac{B A}{B E_{1}}=\frac{B A}{\sqrt{A E_{1}^{2}+A B_{1}^{2}}}=\frac{B A}{\sqrt{A E^{2}+E E_{1}^{2}+A B^{2}}}=\frac{H}{\sqrt{4 r^{2}+\frac{S^{2}}{4}+H^{2}}}=\frac{2 H}{\sqrt{16 r^{2}+S^{2}+4 H^{2}}} \tag{35}
\end{equation*}
$$

Solving the quadratic equation (32), we find t_{22}

$$
\begin{equation*}
t_{22}=\frac{v_{z 1} \cos \alpha \pm \sqrt{v_{11}^{2} \cos ^{2} \alpha+2 g H}}{-g} \tag{36}
\end{equation*}
$$

Substituting $\cos \alpha$ values from (35) to (36), we get

$$
\begin{gather*}
t_{22}=\frac{v_{z 1} \cdot 2 H}{-g \cdot \sqrt{16 r^{2}+S^{2}+4 H^{2}}} \mp \frac{1}{g} \sqrt{v_{z 1}^{2} \cdot \frac{4 H^{2}}{\left(16 r^{2}+S^{2}+4 H^{2}\right)}+2 g H}=-\frac{2 v_{z 1} \cdot H}{\sqrt{16 r^{2}+S^{2}+4 H^{2}}} \mp \\
\frac{1}{g} \sqrt{\frac{4 v_{Z 1}^{2} \cdot H^{2}}{\left(16 r^{2}+S^{2}+4 H^{2}\right)}+2 g H} \tag{37}
\end{gather*}
$$

Of the two values of t_{22} with the signs " + " and "-", we are satisfied with a positive value for the definition t_{22}

$$
\begin{equation*}
t_{22}=-\frac{2 v_{z 1} \cdot H}{g \sqrt{16 r^{2}+S^{2}+4 H^{2}}}+\frac{1}{g} \sqrt{\frac{4 v_{z 1}^{2} \cdot H^{2}}{\left(16 r^{2}+S^{2}+4 H^{2}\right)}+2 g H} \tag{38}
\end{equation*}
$$

4 Conclusions

As a result of theoretical studies, an equation of the particle's trajectory reflected from the reflecting plane of the cover reflector is obtained, affecting the mixing quality, the required power, and the performance of the continuous mixer when mixing feed.

References

1. Mamatov F., Eshdavlatov E., Suyunov A. The Shape of the Mixing Chamber of the Continuous Mixer, J Adv Research in Dynamical \& Control Systems 12, 2016-2023 (2020)
2. Mamato F. M., Eshdavlatov E., SuyunoA. Continuous Feed Mixer Performance, Journal of Advanced Research in Dynamical and Control Systems 12, 2195-2200 (2020)
3. Maiviatov F., F. Karshiev, ShGapparov. Movement of crushed stem particles when they interact with hammers, IOP Conf. Series: EarthandEnvironmentalScience 868, 012060 (2021)
4. Maiviatov F., K. Ravshanov, S. Mamatov, I. Temirov, D. Kuvvatov, A Abdullayev, Combined machine for preparing the soil for re-sowing crops, IOP Conf. Series: EarthandEnvironmentalScience 868, 012066 (2021)
5. K. Ravshanov, K. Fayzullaev, I. Ismoilov, D. Irgashev, S. Mamatov and Sh. Mardonov, The machine for the preparation of the soil in sowing of plow crops under film, IOP Conf. Series: Materials Science and Engineering 883(2020)
6. D.Chuyanov,G.Shodmonov,I.Avazov,N. Rashidov, S.Ochilov, Soil preparation machine parameters for the cultivation of cucurbitaceous crops, IOP Conf. Series: Materials Science and Engineering 883(2020)
7. FayzullayevKh., Mamatov S., Radjabov M., Sharipov Sh., Tavashov R., and Nurmanova M. The quality of loosening the soil with subsoilers of the combined machine, IOP Conf. Series: MaterialsScienceandEngineering 1030 (2021)
8. I. Temirov, Kh. Ravshanov, Kh. Fayzullaev, Sh. Ubaydullaev, and U.Kodirov, Development of a machine for preparing the soil for sowing melons under the film, IOP Conf. Series: MaterialsScienceandEngineering 1030 (2021)
9. U. Kodirov, N. Aldoshin, Sh. Ubaydullayev, E. Sharipov, Z. Muqimov and B. Tulaganov, The soil preparation machine for seeding potatoes on comb, Conf. Series: Materials Science and Engineering 883(2020)
10. H. Ravshanov, L. Babajanov, Sh. Kuziev, N. Rashidov, Sh. Kurbanov, Plough hitch parameters for smooth tails, IOP Conf. Series: Materials Science and Engineering 883 (2020)

[^0]: *Corresponding author: fmamatov_50@mail.ru

