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Abstract. In this article, we study the behavior of two species evolving in 
a domain with a free boundary. This system mimics the spread of invasive 
or new predator species, in which free boundaries represent the expanding 
fronts of predator species and are described by the Stefan condition. A 
priori estimates for the required functions are established. These estimates 
are used to prove the existence and uniqueness of the solution. 

1 Introduction 

Today, humanity faces increasingly serious environmental and epidemiological problems, 

such as environmental pollution, the invasion of exotic species, the emergence of new 

infectious diseases, and the resumption of existing epidemiological diseases. Recently, 

Mathematical modeling has been successfully used to study many biomedical and 

epidemiological problems, and in all these contexts, nonlinear and complex dynamics have 

been observed [1-7]. Over the past twenty years, significant progress has been made in the 

mathematical modeling of biomedical processes, leading to more complex models 
consisting of nonlinear partial differential equations systems. Population dynamics is one of 

the most widely discussed topics in biomathematics. The study of the evolution of different 

populations has always been of particular interest, starting with populations of the same 

species but gradually moving to more realistic models in which different species live and 

interact in the same habitat. Among them, we can find models that study competitive 

relationships, symbiosis, commensalism, or predator-prey relationships. 

Studying the spatial and temporal behavior of predator and prey in an ecological system 

is important in population ecology. To study the predator-prey system, various types of 

mathematical models have been proposed [10, 11]. These studies provide a theoretical 

framework for understanding the complex spatiotemporal dynamics observed in real 

ecological systems. Such models are mathematically interesting, and a rigorous 

mathematical analysis of these models, such as global existence, uniqueness, and stability 
of solutions, is attracting more and more attention. 
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In this article, we consider the following model: 
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where {( , ) : 0,0 ( )}D t x t x s t    , ( , )u t x , ( , )v t x  denote the population densities of 

the two competitors, and all parameters are positive numbers. 

From a biological point of view, model (1)-(6) describes how the two species evolve 

if they initially occupy the bounded region 
0

[0, ]s . The homogeneous Neumann 

boundary condition at 0x   indicates that the left boundary is fixed, with the 

population confined to move only to the right of the boundary point 0x  . We assume 

both species tend to emigrate through the right boundary point to obtain their new 

habitat: the free boundary ( )x s t  represents the spreading front. Moreover, it is 

assumed that the expanding speed of the free boundary is proportional to the normalized 

population gradient at the free boundary. This is well-known as the Stefan condition. 

Regarding the problem data, the following conditions are assumed to be satisfied: 

i. Parameters a , b ,  , m , k , ,  
i

m  and 
i

d  ( i 1.2) are positive constants; 
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When 
1 2

0m m  , the problem (1)-(6) was investigated in the works [13-15] and proved 

a spreading-vanishing dichotomy. In [1,16,17], the authors studied the free boundary 
problem for a reaction-diffusion system with a linear convection term. They obtained a 

dichotomy result and presented a constant asymptotic spreading speed of the expanding 

front. 

The rest of the paper is organized as follows. First, we establish two-sided bounds 

for ( , )u t x , ( ; )v t x  and ( )s t , and then a Holder norm bounds for ( ; )u t x , ( ; )v t x .  

2 A priori estimates and global existence 

First, we establish some a priori estimates for the problem (1)-(6). 
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Lemma 1. - Let ( ( , ), ( , ), ( ))u t x v t x s t  be a solution of problem (1)-(6) for  [0, ]t T . 

Then we have the following estimates 

 

 0 1
0 ( , ) max 1, , ( , ) ,u t x u M t x Q


  „ ‖ ‖   (7) 

 

 1 0 2
0 ( , ) max , , ( , ) ,v t x M a v M t x D


   „ ‖ ‖  (8) 

 

1 2 3
0 ( ) , 0 ,s t N N M t T    „ „   (9) 

 

where 
 0

1 0

1
0,

01

( )
max , ,
x s

M u x
N

m s x

 
  

 

 
 0

2 0

2
0,

2 0

( )
max ,
x s

M k v x
N

m s x

 
  

 

 

 

Proof: first we prove the positivity of the function ( , )v t x . Take an arbitrary point 

P D  such that ( ) 0v P  . At this point, the right-hand side of  (2)  should be zero. And 

also, at this point, the function ( , )v t x  reaches its minimum value. Hence, according to the 

usual maximum principle 
0

( ) ( )v P v P  for all 
0 0 0 0 0

( , ) : 0 ,0 ( )P D t x t T x s t       

and we arrive at a contradiction. The resulting contradiction proves that ( , ) 0v t x   in D . 

Similarly, we have ( , ) 0u t x   for D , since ( , ( )) 0,u t s t    the Hopf lemma, then  

( , ( )) 0
x

u t s t   for all (0, ]t T . ( , ) 0v t x   for D ,  since ( , ( )) 0,v t s t   the Hopf lemma 

then  ( , ( )) 0
x

v t s t   for all (0, ]t T . It follows from the free boundary condition in (6) 

that ( ) 0s t   for (0, ]t T . 

It follows from the comparison principle that 
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Similarly, considering the following initial value problem 
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by comparison principle, we obtain that 
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To derive an upper bound for ( )s t , to this end, we compare ( , )u t x , ( , )v t x  to the 

auxiliary functions ( , )U t x , ( , )V t x  defined by 
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By applying the maximum principle one more time(11), we obtain 
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Then, (10) also implies that 
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Then we get  (9), which completes the proof. 

We will establish Holder norm bounds 
1

| |


  and 
2

| |


  in D . 

The boundary conditions of the problem (1) - (6) do not allow us to use the well-

known results of [8]. Therefore, firstly, we introduce a transformation to straighten the 

free boundary 

, .
( )

x
t t y

s t
 

 
 

For each equation of the system, we separately formulate the corresponding 

problem: Then, the domain D  corresponds to the domain 

  , :0 ,0 1Q t y t T y     , and the bounded  functions    , , ,U t y u t x

   , ,V t y v t x   are a solution to the problem 
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Conditions for unknown boundaries will take the form: 
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For all equations in problems (12) and (13), the parabolicity condition and the 

subordination condition for lower-order terms are satisfied (see [8]), which allows you to 

directly apply the results of [8]. 

We formulate the theorem for the function  ,V t y . 

Similar results are valid for  ,U t y . 

Theorem 2. - Let the function  ,V t y , 
2
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V  and satisfies the conditions of the problem (13). Then 
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Let the function  ,V t x  satisfying the equation (13) in Q , continuous in Q  at the 

place with derivatives  
t
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where 
20 2

min
Q

A A ,  0, 0, 1t y y    - parabolic boundary. 

The proof is given as in Theorems 3 and 4 in [8]. 

3 Existence and uniqueness of solutions 

In this section, we first state a result about the local existence and uniqueness of a solution 

to (1)-(6).  

Theorem 2. Assume that 
0 0

( , )u v  satisfies the condition (ii), then for any (0,1),  

there is a 0T   such that the problem (1)-(6) admits a unique solution ( ( , )u t x , 

( , )v t x , ( )h t ), which satisfies 
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Proof. Then the, problem (1)-(6) is transformed into the following problems (12)-(13) with 

a fixed boundary. As mentioned above, we will use the contraction mapping principle to 

prove the local existence of a solution. We denote by   0 0
' (1) 1 .s U V      As 
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and this ensures that the mapping ( , ) ( , )t x t y  is a diffeomorphism. 

As mentioned above, we will construct a contraction mapping from 
T

X   into 
T

X   to 

prove the existence of a local solution. We begin this construction now. As 0 t T  , 

the coefficients 
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the following initial-boundary value problem arises: 

 

 

   2

1 1

2

0

0

, ( , , , , , ) 0, 0  and 0 1,

, , , , , , 0, 0   and 0 1,

(0, ) ( ), 0 ,

(0, ) ( ), 0 1,

( ,0) ( ,1) 0, 0 ,

( ,0) ( ,1) 0, 0 ,

1

yy y t

xx y t

y

y

A t s U B t y s U V U U t y

A t s V B t

T

y s U V V V t y

V y V y y

U y U y y

U t U t t

V t

T

V t t

      


     





 
  


 

„ „

„

„ „

„ „
 

 

for any (0,1) , admits a unique bounded solution 
1 1

1 , 1 ,
2 2( , ) ( ) ( ).U V C Q C Q
 

 
 

 

     

Moreover, 

 

1
1 ,

2
1

( )uC Q

U C





 and 
1

1 ,
2

2
( )

,
vC Q

V C





  

 

where 
1

C  and 
2

C  depend on 
0

s ,  , 20 [0,1])C
U  and 20 [0,1]C

V . 

Next, we define 

 

0

0

( ) ( ,1) ( ,1) .
T

y y
s t s U V d        

 
 

Then     2( ,1) ( ,1) [0, ]
y y

s t U V C T


         0 
2

3
C

s C
   and 

2 3
' ,

C
s C   where 

3
C  depends on  , 

0
s ,  , 20 [0,1]C

U  and 20 [0,1]C
V . 

We are now ready to consider the mapping defined on 
T

X  by the formula: 

 

   : , , , , ,U V s U V sF  

 

to find a fixed point. We first confirm that for sufficiently small T , F  maps 
T

X  to 

itself: indeed, if we take T  such that 

 

E3S Web of Conferences 401, 04062 (2023)

CONMECHYDRO - 2023
https://doi.org/10.1051/e3sconf/202340104062

7



2 2 2

* 1 1

1 2 3
0 min , , ,T C C C  

  

 
 

   
   

 

then we have 

  1 0,C T
s s  

  1
0,

max
t T

s s


  
 

   
2

0, ,
2

max
t T t

s t s
T

t









 

   
 

  

 
2

2 2

3
0,

max 1,
Ct T

s T C T

 



    

         

    1

2
10 0

0, , 0,1 0, , 0,1
2

, 0,
max max

C Q t T y t T y

U t y U y
U U U U t

t








   

  
     

  
    

   

   
1

,0
2

1 1 1

2 2 2
1 1

0, , 0,1 ,
2

, ,
max 1,

Ct T y t

U t y U y
T U T C T

t



  










  


  

  
    

  

 

    

         

    1

2
10 0

0, , 0,1 0, , 0,1
2

, 0,
max max

C Q t T y t T y

V t y V y
V V V V t

t








   

  
     

  

 

    

   

   
1

,0
2

1 1 1

2 2 2
1 2

0, , 0,1 ,
2

, ,
max 1.

Ct T y t

V t y V y
T V T C T

t



  










  


  

  
    

  

 

 

In other words, F  maps 
T

X  to 
T

X . Now we check that F  is a contraction for a 

sufficiently small T. 

It follows from the estimates above that the image of F  lies in the compact subset 

T
X , and the standard argument also shows that F  is continuous. Using the Schauder 

fixed point theorem, we conclude that F  has a fixed point in 
T

X . 

In what follows, we can use the Schauder bounds to obtain additional regularity a 

solution such as the Holder continuity for ( )s t , and the second spatial derivatives 

functions U  and V . 
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4 Conclusions 

The theory of parabolic equations of the reaction-diffusion type plays an important role in 

solving practical problems. Especially for reaction-diffusion-type parabolic equations, free 

boundary value problems are widely used in mathematical physics, mechanics, and 

technology, especially in nanotechnology. 

The main contribution of this article is to determine the global existence of the classical 

solution of problem (1)-(6)  and to study the behavior of the solution. For a new class of 

free boundary value problems for mixed two-phase equations, a method for setting a priori 

predictions of the Shauder type was proposed. The principle of comparison was proven. 

The problem of the existence and uniqueness of the solution of the free boundary value 

problem (1)-(6) was studied. 
The results obtained in this study allow the study of free boundary value problems for a 

parabolic equation of the reaction-diffusion type in the future. Hopefully, our work will 

encourage the study of various free boundary value problems for many parabolic equations. 
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