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Abstract. The article presents the simulation of vibrations of a cylindrical 
elastic rod bent along a helix for the swing link of a locomotive. As a 
result, methods for calculating the dynamic strength of helical springs for 
locomotives were developed. 

1 Introduction 

The development of the modern theory of oscillations of the bearing frame of locomotives 

and the system of their swing links is characterized by the wide use of theoretical research 

methods and numerical computer processing of the results and experimental data on the 

stress-strain state of structures and dynamic strength calculations. 

The foundations of the theory and practical methods for studying the dynamics of 

vehicles were developed by N.P. Petrov, I.E. Zhukovsky, S.P. Timoshenko [1], and further 

by A.M. Goditsky - Tsvirko, M.V. Vinokurov. M.F. Verigo, S.V. Vershinsky, S.M. 

Kutsenko, V.A. Lazaryan, V.B. Medel, I.I. Chelnokov in their studies fully developed 

modern methods for the research of natural and forced oscillations of rail vehicles, their 
interaction with the superstructure of the track. A significant contribution to the solution of 

these problems was made by E.P. Blokhin, L.O. Grachev, V.P. Ivanov, I.P. Isaev, A.A. 

Kamaev, L.N. Nikolsky, E.N. Nikolsky, A.N. Savoskin, V.P. Koturanov, M.M. Sokolov, 

L.A. Shadur and others. 

Research has been conducted and is being conducted on this topic by leading scientists 

worldwide such as S.A. Brebbia (Wessex Institute of Technology, UK), G.M. Carlomagno 

(University of Naples di Napoli, Italy), A. Varvani-Farahani (Ryerson University, Canada), 

S.K. Chakrabarti (USA), S. Hernandez (University of La Coruna, Spain), S.-H. Nishida 

(Saga University, Japan) [2-9]. Authoritative scientific schools and prominent scientists in 

the CIS countries from MIIT, PGUPS, MAI, VNIIZhT, JSC VNIKTI, JSC Russian 

Railways, etc. worked on these issues. A significant contribution to solving many complex 
problems and checking theoretical conclusions related to the study of the processes of 

oscillations of the spring suspension of the rolling stock was made by the Russian Research 

Institute of Railway Transport (CNII MPS) and the Russian Research Institute of Railcar 

Building (NIIV), where along with theoretical studies, a large number of experimental 

studies (bench and full-scale ones) were conducted [10-13]. In Uzbekistan, the academician 

of the Academy of Sciences of the Republic of Uzbekistan, Professor, Doctor of Technical 

Sciences Glushchenko A.D., Professors Fayzibaev Sh.S., Khromova G.A., 
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Shermukhamedov A.A., Mukhamedova Z.G. and their students studied the problems of 

optimizing the systems of spring suspension of rolling stock [14-21]. 

However, in the existing calculation methods, the curvilinearity of surfaces, impulse 

contact processes that occur during the operation of the spring suspension of ground 

vehicles, the complexity of the dynamic loading pattern, and the volumetric configuration 

of systems have not been taken into account so far. 

2 Objects and methods of research 

The objects of study are elastic curvilinear systems of a complex profile and various types 

of shock absorbers for locomotives, for example, helical springs for swing links of a rail 

vehicle. 
The research is based on the use of standard methods of the strength of materials, the 

theory of vibrations and the theory of dynamic strength, operational calculus and model 

experimental studies. Numerical studies are based on the Boundary Element Technology. 

Scientific results obtained by the authors of the article were reported in 2004-2022, at 15 

International Conferences (in the USA, Russia, Kazakhstan, Lithuania, Uzbekistan) and 

were published all over the world [14-21]. 

To derive the equations of spatial oscillations of a cylindrical elastic rod bent along a 

helix with a variable radius of curvature of the coils, we used the results obtained in [19-21] 

and the following assumptions. 

1. The boundary element is taken as a single coil of a cylindrical elastic rod bent along a 

helix with a fixed radius of curvature (Fig. 1). N is the number of boundary elements 
(depending on the spatial configuration of the spring element); it is connected into a single 

dynamic system using boundary conditions. We used the calculation scheme shown in 

Fig.2 (for the axle box of the spring suspension for a rail vehicle, for example, for 

locomotives) [10]. 
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Fig. 1. Boundary element in the form of a single coil of a cylindrical elastic rod bent along a helix 
with a fixed radius of curvature:  a). one model coil; b). developed view. 
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2. One coil is described by a curvilinear coordinate system (Fig. 1), characterized by 

distance ℓ to fix the location of a particular section, measured along the length of a helical 

line bent along the radius 𝑅𝑠  in plane 𝑌 ℓ, passing through the centers of gravity of these 

sections. 

The parameters of the sections of the spring coil (Fig. 1) are taken into account 

according to  

- cross-sectional area 𝐹𝑠 =
𝜋𝑑𝑠

4

4
;   

- mass intensity 𝑀1 =
𝜋𝑑𝑠

2∙𝜌

4
  and 𝑖1 mass moment of inertia, where ρ is the density of the 

spring coil material;  

- equatorial  𝐼𝑥 =  𝐼𝑦 = 
𝜋𝑑𝑠

4

64
  and polar 𝐼0 = 𝐼𝑥 + 𝐼𝑦 =  = 

𝜋𝑑𝑠
4

32
  moments of inertia of the 

cross-sectional area of the spring coil,  

- modulus of elasticity of the first E and the second G kinds of the coil material. 

3. We introduce generalized coordinates that take into account: 

- elastic bending deformations 𝑥𝑠(𝑡, ℓ), 𝑦𝑠(𝑡, ℓ) in two planes - tangent to the helix and 

parallel to the axis of the cylinder of radius 𝑅𝑠 of the winding of the coil, and perpendicular 

to the first plane; 

- elastic deformations under torsion 𝑄𝑠(𝑡, ℓ) and compression 𝑈𝑠(𝑡, ℓ) relative to the 

longitudinal axis of the helix of the spring. 

4. To accept the model, considering [1, 10, 19], we use the following functions: 

- moments of elastic deformations, bent in the X ℓ plane [19, 20]. 

 

𝑀𝑦(ℓ) = 𝐸𝐼𝑦 (
𝜕2𝑌𝑠

𝜕ℓ2
+

𝑌𝑠

𝑅𝑠
2)   (1) 

 

taking into account the curvature 
1

𝑅𝑠
   of the coils in plane 𝑌 ℓ, 

 

𝑀𝑥(ℓ) = 𝐸𝐼𝑥  
𝜕2𝑥𝑠

𝜕ℓ2
     (2) 

 

- torsional moments about the longitudinal axis of the helix [19, 20]. 

 

𝑀𝑥𝑦(ℓ) = 𝐺𝐼𝑜 (
𝜕𝑄𝑠

𝜕ℓ
+

1

𝑅𝑠

𝜕𝑥𝑠

𝜕ℓ
)   (3) 

 

where the second component takes into account the value of the additional angle of rotation 

of the section under bending in the 𝑋 ℓ plane and the increasing value of moment 𝑀𝑥𝑦 , 

reduced to the arc of radius  𝑅𝑠 

- compression by axial force relative to the longitudinal axis 𝑂 ℓ 

 

𝑃𝑠(ℓ) = 𝐸𝐹 
𝜕𝑈𝑠

𝜕ℓ
     (4) 

 

- moments of external forces (for bending sections) in planes 𝑋 ℓ  and  𝑌 ℓ 
 

𝑀𝑦𝑒𝑓(𝑡, ℓ) = 𝑃𝑠𝑅𝑠  sin 𝜆 (1 − cos
2𝜋ℓ

ℓ𝑠
)   (5) 

𝑀𝑥𝑒𝑓(𝑡, ℓ) = 𝑃𝑠𝑅𝑠  cos 𝜆  (1 − cos
2𝜋ℓ

ℓ𝑠
)   (6) 

 

where 𝑃𝐷𝑌𝑁  (𝑡) is the dynamic load on the coil, containing the static component 𝑃𝑠  and the 

dynamic component with amplitude of 𝑃𝐴𝐷𝑌𝑁 
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𝑃𝐷𝑌𝑁  (𝑡) =  𝑃𝑠 + ∑ {∑ 𝑃𝐴𝐷𝑌𝑁 ∙ [cos(𝑛𝜔𝑎𝑡) ∙ [𝜎𝑜(𝑡 − 𝑘𝑡𝐼) − 𝜎𝑜(𝑡 − 𝑘𝑡𝐼 − 𝑡𝐼𝑃)]]∞
𝑘=0,1,2,… }∞

𝑛=0,1,…    (7) 

 

where  𝜎𝑜(𝑡) are impulsive functions (Heaviside functions [1] ), λ - is the helix angle; k=0, 

1, 2,… - is the number of impulses of dynamic load; n=0, 1, 2,… is the number of 
harmonics; 

ℓ𝑠 = 2𝜋 𝑅𝑠  is the estimated length of the helix of one coil of the spring, therefore 

 

2𝜋
ℓ

ℓ𝑠

=  
ℓ

𝑅𝑠

  

 

- the twisting moment of external forces is 

 

𝑀𝑇𝑒𝑓(𝑡, ℓ) =  𝑃𝑠 𝑅𝑠  cos 𝜆 (1 − cos
2𝜋ℓ

ℓ𝑠
)   (8) 

 

- the intensity of external forces bending the sections of one coil of the spring is 

 

𝑞𝑦𝑒𝑓(𝑡, ℓ) =  
4𝜋 𝑃𝑠 𝑅𝑠  sin 𝜆

ℓ𝑠
2  cos

ℓ

𝑅𝑠

     (9) 

𝑞𝑥𝑒𝑓(𝑡, ℓ) =  
4𝜋 𝑃𝑠 𝑅𝑠  cos 𝜆

ℓ𝑠
2  cos

ℓ

𝑅𝑠

     (10) 

𝑄𝑇𝑒𝑓(𝑡, ℓ) =  
2𝜋 𝑃𝑠 𝑅𝑠  cos 𝜆

ℓ𝑠
2  sin

ℓ

𝑅𝑠

     (11) 

𝑃𝐷𝑌𝑁(𝑡) 
 

 

Fig. 2. Calculation scheme for simulation of vibrations of cylindrical elastic rod bent along a helix 
(for swing link of a rail vehicle (a locomotive)). 

 

5. With the introduced assumptions, using the Ostrogradsky-Hamilton method [1], we 
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compose the equations of oscillations for one coil of the spring along each generalized 

coordinate of elastic deformations. Then, using the Euler equation for elastic systems, we 

obtain, as a result, a system for describing the bending (in two planes), longitudinal and 

torsional vibrations of a cylindrical rod bent along a helix, which generally characterizes 

the spatial vibrations of a coil of a helical spring 

 
𝜕4𝑦𝑠

𝜕ℓ4
+

𝜕2𝑦𝑠

𝜕ℓ2
∙

1

𝐸 𝐼𝑦
(

2

𝑅𝑠
2 + 𝑃𝑠 sin 𝜆) +

𝑦𝑠

𝑅𝑠
4 +

1

𝐸 𝐼𝑦
(𝑀1

𝜕2𝑦𝑠

𝜕𝑡2
− 𝑖1

𝜕4𝑦𝑠

𝜕𝑡2𝜕ℓ2
) + 

+
1

𝑅𝑠
∙ (

1

𝑅𝑠
2

𝜕𝑈𝑆

𝜕ℓ
+

𝜕3𝑈𝑆

𝜕ℓ3
) =

2𝜋 sin 𝜆

ℓ𝑠𝐸 𝐼𝑦
∙ 𝑃𝑠(𝑡) cos (

ℓ

𝑅𝑠
) ,                  (12) 

𝜕4𝑥𝑠

𝜕ℓ4
+

𝜕2𝑥𝑠

𝜕ℓ2
∙

1

𝐸𝐼𝑥
(𝑃𝑠 sin 𝜆 −

𝐺𝐼0

𝑅𝑠
2 ) +

1

𝐸 𝐼𝑥
(𝑀1

𝜕2𝑥𝑠

𝜕𝑡2
− 𝑖1

𝜕4𝑥𝑠

𝜕𝑡2𝜕ℓ2
) + 

+
𝜕2𝑄𝑠

𝜕ℓ2
∙

𝐺𝐼0

𝑅𝑠𝐸 𝐼𝑥
=

2𝜋 cos 𝜆

ℓ𝑠𝐸 𝐼𝑥
∙ 𝑃𝑠(𝑡) cos (

ℓ

𝑅𝑠
) ,       (13) 

𝜕3𝑦𝑠

𝜕ℓ3
+

1

𝑅𝑠
2 ∙

𝜕𝑦𝑠

𝜕ℓ
+

𝐹𝑠𝑅𝑠
2

𝐼𝑦
∙

𝜕2𝑈𝑠

𝜕ℓ2
−

𝑀1𝑅𝑠

𝐸 𝐼𝑦
∙

𝜕2𝑈𝑠

𝜕𝑡2
= 0   (14) 

1

𝑅𝑠
∙

𝜕2𝑥𝑠

𝜕ℓ2
+

𝜕2𝑄𝑠

𝜕ℓ2
−

𝑖1

𝐺𝐼0
∙

𝜕2𝑄𝑠

𝜕𝑡2
= −

1

𝐺𝐼0
cos 𝜆 ∙ sin (

ℓ

𝑅𝑠
) ∙ 𝑃𝑠(𝑡)  (15) 

 

The resulting system of differential equations allows approximate solutions for the cases 

when 𝑃𝑠 sin 𝜆 and 𝑃𝑠 cos 𝜆  are constants. These solutions include functions of static 

𝑥𝑠(ℓ), 𝑦𝑠(ℓ), 𝑈𝑠(ℓ), 𝑄𝑠(ℓ) and dynamic 𝑥𝑎(𝑡, ℓ), 𝑦𝑎(𝑡, ℓ), 𝑈𝑎(𝑡, ℓ), 𝑄𝑎(𝑡, ℓ) components. 

For numerical calculation in the MATHCAD 15 programming environment, we accept 

the following initial data and assumptions: 

1. We accept a model of a cylindrical helical spring, characterized by a wire diameter 

𝑑𝑠, an average coil diameter 𝐷𝑠, a pitch between turns 𝑆𝑠 in an unloaded state, a number of 

turns 𝑖𝑠, a static load 𝑃𝑠 , a lead angle in a loaded state λ. 

2. We present the initial model as a single coil with a vertical axis of symmetry and 

length passing through the center of gravity of the sections of the helix ℓ𝑠 (Fig. 1, a). 

3. For the accepted model of a single coil, the upper section for ℓ = 0 is considered 

cantilever (free end), loaded with concentrated static load 𝑃𝑠 , and the lower section for ℓ =
ℓ𝑠 - is considered clamped. 

Boundary conditions for one coil (Fig. 1, a) are given in the following form: 

For ℓ = 0 

 
𝜕2𝑦𝑠(ℓ=0)

𝜕ℓ2
 = 0 ;  

𝜕2𝑥𝑠(ℓ=0)

𝜕ℓ2
 = 0 ;  

𝜕3𝑦𝑠(ℓ=0)

𝜕ℓ3
 = 0 ; 

𝜕3𝑥𝑠(ℓ=0)

𝜕ℓ3
 = 0 ;  

𝜕𝑄𝑠(ℓ=0)

𝜕ℓ
 = 0 ;              (16) 

 

for   ℓ = ℓ𝑠 

 

𝑦𝑠(ℓ = ℓ𝑠) = 0 ; 𝑥𝑠(ℓ = ℓ𝑠) = 0 ; 
𝜕𝑦𝑠(ℓ=ℓ𝑠)

𝜕ℓ
 = 0 ; 

𝜕𝑥𝑠(ℓ=ℓ𝑠)

𝜕ℓ
 = 0 ; 𝑄𝑠(ℓ = ℓ𝑠) = 0.      (17) 

 

4. The upper section of the coil is loaded with a vertical static load 𝑃𝑠, which is 

decomposed into two components 

- perpendicular to the axis of the helix and equal to 𝑃𝑥 =  𝑃𝑠  cos 𝜆, 

- directed along the helix and equal to 𝑃𝑦 =  𝑃𝑠  sin 𝜆 , perpendicular to vector 𝑃𝑥. 

5. Ignoring the effect of static longitudinal strains 𝑈𝑠(ℓ)  on bending 𝑥𝑠(ℓ), 𝑦𝑠(ℓ) , we 

obtain a system of equations for calculating the static strains of the sections of a helical 

spring in a form similar to the ones obtained in [1-3]. 
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𝜕4𝑦𝑠

𝜕ℓ4
+

𝜕2𝑦𝑠

𝜕ℓ2
∙

1

𝐸 𝐼𝑦
(

2

𝑅𝑠
2 + 𝑃𝑠 sin 𝜆) +

𝑦𝑠

𝑅𝑠
4 =  

2𝜋 sin 𝜆

ℓ𝑠𝐸 𝐼𝑦
∙ 𝑃𝑠 cos (

ℓ

𝑅𝑠
) ,                   (18) 

𝜕4𝑥𝑠

𝜕ℓ4
+

𝜕2𝑥𝑠

𝜕ℓ2
∙

1

𝐸𝐼𝑥
(𝑃𝑠 sin 𝜆 −

𝐺𝐼0

𝑅𝑠
2 ) +

𝜕2𝑄𝑠

𝜕ℓ2
∙

𝐺𝐼0

𝑅𝑠𝐸 𝐼𝑥
=

2𝜋 cos 𝜆

ℓ𝑠𝐸 𝐼𝑥
∙ 𝑃𝑠 cos (

ℓ

𝑅𝑠
),      (19) 

𝜕3𝑦𝑠

𝜕ℓ3
+

1

𝑅𝑠
∙

𝜕𝑦𝑠

𝜕ℓ
+

𝐹𝑠𝑅𝑠
2

𝐼𝑦
∙

𝜕2𝑈𝑠

𝜕ℓ2
= 0 ,                                                                 (20) 

1

𝑅𝑠
∙

𝜕2𝑥𝑠

𝜕ℓ2
+

𝜕2𝑄𝑠

𝜕ℓ2
= −

1

𝐺𝐼0
cos 𝜆 ∙ sin (

ℓ

𝑅𝑠
) ∙ 𝑃𝑠 .                                               (21) 

 

We combine solutions to equations (18) and (20), and equations (19) and (21). Taking 

into account the introduced assumptions, after transformation, for (18) and (20) we obtain 

the following  
 

𝜕4𝑦𝑠

𝜕ℓ4
+ 𝛽𝑦

2 ∙
𝜕2𝑦𝑠

𝜕ℓ2
+ 𝛼𝑦

2𝑦𝑠 =  𝑃𝑠𝑦 cos (
ℓ

𝑅𝑠
) ,                                                 (22) 

𝜕2𝑈𝑠

𝜕ℓ2
=  −𝛽𝑢

2 𝜕3𝑦𝑠

𝜕ℓ3
− 𝛼𝑢

2 𝜕𝑦𝑠

𝜕ℓ
 ,                                                                      (23) 

 

Where 

 

𝛽𝑦
2 = 

1

𝐸 𝐼𝑦
(

2

𝑅𝑠
2 + 𝑃𝑠 sin 𝜆) ; 𝛼𝑦

2 = 
1

𝑅𝑠
4 ;  𝛽𝑢

2 =  
𝐼𝑦

𝐹𝑠𝑅𝑠
2  ;  𝛼𝑢

2 =
𝐼𝑦

𝐹𝑠𝑅𝑠
3  ; 𝑃𝑠𝑦 =

2𝜋 sin 𝜆

ℓ𝑠𝐸 𝐼𝑦
∙ 𝑃𝑠. 

 

The solution to equation (22) for static deflections 𝑦𝑠𝑠𝑡𝑎𝑡(ℓ)  is represented as the sum of 
the solution to homogeneous equation (22) and a partial solution [1] 

 

𝑦𝑠𝑠𝑡𝑎𝑡(ℓ) =  𝑦𝑠(ℓ) + 𝑦�̅�(ℓ) = (𝐶1𝑦𝑠ℎ(𝜔𝑘𝑦ℓ)+𝐶2𝑦𝑐ℎ(𝜔𝑘𝑦ℓ) + 𝐶3𝑦 sin(𝜔𝑏𝑦ℓ) + 𝐶3𝑦 cos(𝜔𝑏𝑦ℓ) + 

𝑦𝑠𝑎̅̅ ̅̅ (ℓ),                                                            (24) 

 

where coefficients 𝐶1𝑦, 𝐶2𝑦, 𝐶3𝑦, 𝐶4𝑦 are calculated with the boundary conditions according 

to the frequency equation by the iteration method using the MATHCAD 15 programming 

environment, and eigenfrequencies for bending vibrations of one coil of the spring 

𝑦𝑠𝑠𝑡𝑎𝑡(ℓ)  are: 

 

𝜔𝑘𝑦 = √−
𝛽𝑦

2

2
+ √(

𝛽𝑦
2

2
)

2

− 𝛼𝑦
2 ;  𝜔𝑘𝑦 = √𝛽𝑦

2

2
+ √(

𝛽𝑦
2

2
)

2

− 𝛼𝑦
2 ,                (25) 

 

partial solution to equation (22) 𝑦�̅�(ℓ) is sought in the following form 

 

𝑦�̅�(ℓ) = 𝑦𝑠𝑎̅̅ ̅̅ (ℓ) ∙ cos (
ℓ

𝑅𝑠
) ,                                                               (26) 

 

where   𝑦𝑠𝑎̅̅ ̅̅ (ℓ) =
𝑃𝑠𝑦𝑅𝑠

4∙cos(
ℓ

𝑅𝑠
)

1−𝑅𝑠
2𝛽𝑦

2−𝛼𝑦
2𝑅𝑠

4 . 

The solution to equation (23) for the longitudinal oscillations of one coil of the spring  

𝑈𝑠𝑠𝑡𝑎𝑡(ℓ) is obtained using the Simson procedure 

 

𝑈𝑠𝑠𝑡𝑎𝑡(ℓ) =  ∫ [∫ (−𝛽𝑢
2 𝜕3𝑦𝑠

𝜕ℓ3
− 𝛼𝑢

2 𝜕𝑦𝑠

𝜕ℓ
) 𝑑ℓ

ℓ𝑠

0
] 𝑑ℓ

ℓ𝑠

0
                                        (27) 

 

in the following form 
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𝑈𝑠𝑠𝑡𝑎𝑡(ℓ) = 𝐴1𝑢𝑐ℎ(𝜔𝑘𝑦ℓ) + 𝐴2𝑢𝑠ℎ(𝜔𝑘𝑦ℓ) + 𝐴3𝑢 cos(𝜔𝑏𝑦ℓ) +𝐴4𝑢 sin(𝜔𝑏𝑦ℓ)+ 

+𝐴5𝑢 cos (
ℓ

𝑅𝑠
) + 𝐴6𝑢 sin (

ℓ

𝑅𝑠
) + 𝐴7𝑢ℓ + 𝐴8𝑢                                       (28) 

 

where the following notation is introduced  

 

𝐴1𝑢 = −𝛽𝑢
2𝐶1𝑦𝜔𝑘𝑦 − 𝛼𝑢

2 𝐶1𝑦

𝜔𝑘𝑦
 ; 𝐴2𝑢 = −𝛽𝑢

2𝐶2𝑦𝜔𝑘𝑦 − 𝛼𝑢
2 𝐶2𝑦

𝜔𝑘𝑦
 ; 𝐴3𝑢 = −𝛽𝑢

2𝐶3𝑦𝜔𝑏𝑦 − 𝛼𝑢
2 𝐶3𝑦

𝜔𝑏𝑦
 ; 

𝐴4𝑢 = −𝛽𝑢
2𝐶4𝑦𝜔𝑏𝑦 − 𝛼𝑢

2 𝐶4𝑦

𝜔𝑏𝑦
 ; 𝐴5𝑢 = −𝛽𝑢

2 𝑦𝑠𝑎̅̅ ̅̅ ̅(ℓ)

𝑅𝑠
 ; 𝐴6𝑢 = 𝛼𝑢

2 𝑅𝑠; 

𝐴7𝑢 = 𝛽𝑢
2 ∙ (𝐶2𝑦𝜔𝑘𝑦

2 − 𝐶4𝑦𝜔𝑏𝑦
2 ) + 𝛼𝑢

2 ∙ (𝐶2𝑦 + 𝐶4𝑦 + 𝑦𝑠𝑎̅̅ ̅̅ (ℓ)) ; 

𝐴8𝑢 = 𝛽𝑢
2 ∙ (𝐶1𝑦𝜔𝑘𝑦 + 𝐶3𝑦𝜔𝑏𝑦 −

𝑦𝑠𝑎̅̅ ̅̅ (ℓ)

𝑅𝑠
) + 𝛼𝑢

2 ∙ (
𝐶1𝑦

𝜔𝑘𝑦
−

𝐶3𝑦

𝜔𝑏𝑦
). 

 

Now, as a result of combined solution to equations (19) and (21), we obtain solutions for 

static elastic deformations of bending 𝑥𝑠𝑠𝑡𝑎𝑡(ℓ)  and elastic deformations of 

torsion 𝑄𝑠𝑠𝑡𝑎𝑡(ℓ) with assumption ( 
𝜕4𝑥𝑠

𝜕ℓ4 → 0; 
𝜕2𝑄𝑠

𝜕ℓ2  → 0), and with boundary conditions 

(17). The solution was obtained by the method of operational Laplace transformation [1] by 

analogy with equations (18) and (20). 

4𝜋2𝑅𝑠
2 ≫ ℓ𝑠  holds for coil springs, so the solution of  𝑥𝑠𝑠𝑡𝑎𝑡(ℓ) is simplified 

 

𝑥𝑠𝑠𝑡𝑎𝑡(ℓ) ≈ 𝑅𝑠𝑐𝑡𝑔𝜆 ∙ (1 − 𝑐ℎ
ℓ

𝑅𝑥
) + 𝑥0𝑠𝑐ℎ

ℓ

𝑅𝑥
+ 𝑅𝑠𝑥0𝑠̇ 𝑠ℎ

ℓ

𝑅𝑥
 ,                             (29) 

𝑥0𝑠 ≈ 𝑅𝑠𝑐𝑡𝑔𝜆 ∙ (1 − 𝑐ℎ
ℓ𝑠

𝑅𝑥
) ;         𝑥0𝑠̇  ≈  −

𝑅𝑠𝑐𝑡𝑔𝜆

𝑅𝑥
∙ 𝑠ℎ

ℓ𝑠

𝑅𝑥
 .                               (30) 

 

Then, integrating equation (21), with boundary conditions (17), we obtain solution for 

𝑄𝑠𝑠𝑡𝑎𝑡(ℓ) using the Simpson procedure 

 

𝑄𝑠𝑠𝑡𝑎𝑡(ℓ) =  
𝑃𝑠𝑅𝑠ℓ cos 𝜆

𝐺𝐼𝑝
−

𝑃𝑠𝑅𝑠ℓ cos 𝜆

𝐺𝐼𝑝
∙

ℓ𝑠

2𝜋
∙ sin

2𝜋ℓ

ℓ𝑠
+ 𝐴1𝑅𝑥𝑐ℎ

ℓ

𝑅𝑥
−   

  −𝐴2
ℓ𝑠

2𝜋
cos

2𝜋ℓ

ℓ𝑠
+ 𝐴3𝑅𝑥𝑠ℎ

ℓ

𝑅𝑥
+ 𝑄0 ,                                                   (31) 

where  

 

𝐴1 =
𝑥0𝑠

𝑅𝑥
−

4𝜋2𝑅0𝑅𝑥

𝑅𝑠
 ; 𝐴2 =  

2𝜋ℓ𝑠𝑅0

𝑅𝑠
 ; 𝐴3 = 𝑥0𝑠̇  ; 

𝑅0 =
𝑅𝑠𝑃𝑠 cos 𝜆

𝐸𝐼𝑥
∙

𝑅𝑥
2

ℓ𝑠
2+4𝜋2𝑅𝑥

 ; 𝑄0 = −
𝑅𝑠𝑃𝑠ℓ𝑠 cos 𝜆

𝐺𝐼𝑝
− 𝐴1𝑅𝑥𝑐ℎ

ℓ𝑠

𝑅𝑥
+ 𝐴2

ℓ𝑠

2𝜋
− 𝐴3𝑅𝑥𝑠ℎ

ℓ𝑠

𝑅𝑥
 

 

The projection of the elastic deformation of the center of gravity of the internal section of a 

single coil model onto the vertical axis of symmetry of the spring is 
 

𝑥𝑉 = 𝑄0𝑅𝑠 = 𝑥0𝑠 +
𝑅𝑠𝑃𝑠ℓ𝑠 cos 𝜆

𝐺𝐼𝑝
 .                                (32) 

 

For helical springs wound from wire with a diameter of 𝑑𝑠 into the last formula (32) we 

introduce the value of 𝐼𝑝 =
𝜋𝑑𝑠

4

32
 and obtain a formula for calculating the deflection of one 

coil of a helical spring 

 

𝑥𝑉 = 𝑥0𝑠 +
64𝑃𝑠𝑅𝑠

3

𝐺𝑑𝑠
4  .                                                  (33) 

 

The resulting formula differs by the term 𝑋0 from the known formula according to 
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studies given in [1, 10]. This indicates the reliability of the adopted model of a single coil, 

which, unlike the well-known ones, takes into account the bending stresses of coils in two 

mutually perpendicular directions, and the shear stresses arising from the torsion of the 

sections. 

When using a PC to calculate stresses in sections of a model of a helical spring with a 

tubular section, it is appropriate to simultaneously control the reduced stresses 𝜎𝑖 at 8 

characteristic points of each section in comparison with the allowable stress for the material 

of this spring. The solution to such a problem, considering the data in Table 1, is related to 

a variation in diameter 𝑑2 and pressure in the inner hole. 

3 Theoretical and experimental results 

A method for calculating stresses in a coil spring of a tubular section was proposed as a 

result of the analytical and numerical studies. The results of the numerical calculation of the 

stress state of helical springs with swing links for the mainline electric locomotive VL-80s 

are summarized in Table 1. 

Table 1. Selection of rational parameters based on the stress state of a helical spring for spring 
suspension of the mainline electric locomotive VL-80s 

(varying the inner diameter d2) 

№ Spring vibration parameters 

Diameter d2, in mm According to [19] 

for a spring wound 
from a bar  

𝑑 =  42 𝑚𝑚 

12 16 20 

1. 
 

 
1.1. 
1.2. 
1.3 

1.4 

Eigenfrequencies 
(5 modes of vibration) 

𝑝𝑥  

𝑝𝑦  

𝑝𝑄  

𝑝1 ≈ 

≈ 𝑝3  

 
 

1.945 
0.989 
1.042 
5.52 

5.05 

 
 

2.006 
1.03 
1.041 
5.71 

5.24 

 
 

2.08 
1.09 
1.04 
5.95 

5.47 

 
 
- 
- 
- 
- 

- 

2 
Total maximum static stresses 

𝜎𝑠𝑡𝑎𝑡  , MPa 
636.66 684.7 730.11 

546 (not 
considering the 

bending) 

3 
Total maximum dynamic 

bending stresses, 𝜎𝐷𝑌𝑁
𝑏𝑒𝑛𝑑 , МPа 

114.24 154.24 214.84 - 

4 
Total maximum dynamic 

torsion stresses, 𝜏𝐷𝑌𝑁, МPа 
-43.97 -94.56 -145.38 - 

5 
Total maximum dynamic 

stresses, 𝜎𝐷𝑌𝑁, МPа 
122.41 180.91 259.66 148.6 

6 
Total maximum stresses 𝜎𝑚𝑎𝑥  , 

МPа 
759.07 865.61 989.77 694.6 

7 

Tensile strength (endurance 
limit of spring steels of type  

65С228А or 60С2ХА), [𝜎], 
МPа 

 1000  923 

8 Safety factor 𝐾𝑑𝑖𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =
[𝜎]

𝜎𝑚𝑎𝑥
 1.32 1.155 1.01 1.33 
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According to Table 1, a spring was selected for cradle suspension of the VL-80s main 

electric locomotive with the following parameters: D=198 mm, H=648 mm, d1=40 mm, 

d2=12 mm, N=6.  

The total stresses in the most loaded section of the spring at ℓ = 0.33 ℓ𝑠 are in our 

calculation:  

- static at 𝑃𝑠𝑡𝑎𝑡 = 53.50 kH                       -  𝜎𝑠𝑡𝑎𝑡 = 636.66 MPa; 

- dynamic (under bending) for 𝑃𝑎𝐷𝑌𝑁 = 1.4 kH  -  𝜎𝐷𝑌𝑁
𝑏𝑒𝑛𝑑 = 114.24 MPa; 

- dynamic (under torsion) 𝑃𝑄 = 1.0 kH               -   𝜏𝐷𝑌𝑁 = -43.97 MPa; 

- total dynamic stresses 𝜎𝐷𝑌𝑁 = 122.41 MPa; 

- total maximum stresses 𝜎𝑚𝑎𝑥 = 759.07 MPa;  

- safety factor (for [𝜎] = 1000 MPa)                        𝐾𝑑𝑖𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =
[𝜎]

𝜎𝑚𝑎𝑥
=1.32. 

4 Conclusions  

1. The proposed numerical-analytical applied method and refined methods of dynamic 

strength calculation (using the method of boundary elements - Boundary Element 

Technology) for curvilinear elements of the rolling stock of railways of a complex profile 

(springs, vibration dampers, cradle suspension units, spring suspension) are planned to be 
used in the design , operation and modernization with the extension of the useful life of 

locomotives. 

2. The proposed methods are relevant for the Republic of Uzbekistan, and for the CIS 

countries, as they allow us to obtain better dynamic characteristics of ground vehicles, 

which determine their reliability and key performance indices.  
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