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Abstract. The paper analyzes the dynamic response of an underground 
main pipe under the action of a longitudinal wave propagating in soil along 
the pipe. The article assumes that the elastic pipe is of a finite length, and a 
linear viscoelastic model of the "pipe-soil" system interaction is 

considered. The problem is solved numerically using the explicit scheme 
of the finite difference method. A longitudinal wave in the soil is taken as a 
traveling sine wave. The article presents a comparative analysis of the 
results for certain values of elastic and viscous interaction coefficients, 
propagation velocity, and pulse duration. Under elastic interaction of the 
"pipe-soil" system, the reflection of the wave propagating in the 
underground pipeline at the boundaries of the pipeline coincides with the 
propagating wave in soil, leading to an increase in the maximum 

deformation of the underground pipeline, the value of which can double. 
The viscosity coefficient of interaction at the "pipe-soil" system contact 
leads to attenuation of the wavefront in the underground pipeline. For soils 
with values of viscous interaction coefficient of more than 100 kN·s/m2, 
this may lead to complete attenuation of the bursts at the wavefront in the 
pipeline. The choice of the step ratio in coordinate and time equal to the 
wave propagation velocity in the pipeline allows for obtaining results that 
coincide with the exact solution. 

1 Introduction 

Underground pipelines are a key component of critical life support systems such as water 

supply, gas and liquid fuels, sewerage, electricity, and telecommunications. The interaction 

with the soil structure caused by seismic waves has an important effect on pipeline 

behavior, and the integration across the entire pipeline network affects the entire system's 

performance [1, 2]. 

In recent decades, much attention has been paid to the impact of wave propagation on 
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segmented underground pipelines. In [2-6], various models were proposed to analyze the 

interaction of segmented pipelines during wave propagation. 

Damage to underground pipelines during an earthquake could be caused by various 

hazards: permanent soil deformation (landslides, liquefaction, and seismic settlement) and 

wave propagation effect. The latter is characterized by transient deformation and ground 

curvature caused by the traveling wave effect. A simple procedure considering one 

traveling wave with an undamped (traveling) waveform was proposed by T.R. Rashidov 

and N.M. Newmark [7, 8] to analyze the wave propagation. According to T.R.Rashidov's 

statement, the static theory was first considered by R.M. Mukurdumov [9] and then given in 

the monograph by Sh.G. Napetvaridze [10], where he proposed that during wave 

propagation along the pipeline, the pipe and the soil move in the same way. N.M. Newmark 
later proposed a similar assumption that the underground pipeline strictly follows the soil 

movement, called a static theory. Therefore, the maximum axial deformation of the pipe is 

the same as the maximum axial deformation of soil. 

However, the above procedures consider infinite pipe lengths and therefore do not 

consider their effective length and construction work (constraint conditions). In [11], 

analytical relationships were developed for a pipe of finite length subjected to various 

combinations of boundary conditions (i.e., free end, fixed or elastic end) for pipelines of 

different lengths. In 1962, T.R. Rashidov proposed a differential equation for an 

underground pipeline, which became the basis of the T.R.Rashidov's dynamic theory [7, 

11]. G. De Martino et al. [12] and V. Corrado et al. [13] developed models of the pipe-soil 

interaction, taking into account the finite length of the pipeline. Assuming a linear elastic 

model of soil motion and ignoring the slip at the pipe-soil contact interface, the model 
analyzes the dynamic behavior of a finite-length pipeline considering the boundary 

conditions at the ends. It was assumed that the pipeline was continuous; that is, any 

fluctuations between the characteristics (parameters) of the pipeline and its joints were 

considered insignificant. A.A. Ilyushin and T.R. Rashidov [2] proposed a visco-

elastoplastic model of the underground structure interaction with the soil. 

In works [14-24], different mechanical and mathematical models were analyzed, and 

several urgent problems of underground and ground structures were solved. 

The effect of the coefficients of elasticity, viscosity, and plasticity of the pipeline 

interaction with soil on the stress-strain state of an underground pipeline is studied in detail 

in [25-30]. In [13, 29], the influence of inertial forces on the deformed state of an 

underground pipeline was studied in detail. Accumulated experience demonstrates that 
direct simulation of real objects in the general case is not ensuring the required quality of 

the relevant analytical models [31]. 

Let us consider the problem of longitudinal vibration of an underground main pipeline 

under linear viscoelastic interaction at the contact with soil, with three types of fastening 

[25]. 
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here m  is the weight per unit length of the pipeline; E is Young's modulus of the pipe 

material; F is the cross-sectional area of the underground pipeline; xk is the coefficient of 

elastic interaction of the "pipe-soil" system [2]; µ is the coefficient of viscous interaction 

of the "pipe-soil" system, that is, the resistance of the equivalent velocity of the interaction 

of the "pipe-soil" system; H is the laying depth; D is the outer diameter of the 

underground pipeline; ,( )u x t is the absolute displacement in the section x of the 
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underground pipeline at the point in time t ; ,( )gu x t  is the ground displacement 

corresponding to the section x of the underground pipeline at the point in time t . 

In addition, ground motion can be represented as an impulse: a half-sine wave, triangle, 

or trapezoid. Ground displacement parallel to the pipe can be written as  
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where A   is the maximum soil displacement;  is the angular velocity of seismic wave 

vibration determined by the formula 2 /Т  ; 
pC  is the "apparent velocity" of wave 

propagation (hereinafter referred to as the wave propagation velocity in soil). The "apparent 

velocity" of wave propagation in the soil can be greater due to the wave's angle of incidence 

to the pipeline axis or due to the flexible joints of the pipeline. 

Ground motion is written in strains:  
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If an underground pipeline is pliantly fixed at the ends, then the boundary conditions are 

taken in the following form 
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Where 𝑘𝑁1 , 𝑘𝑁2 are the coefficients of compliance of the fastening at the left and right ends 

of the underground pipeline. 

2 Methods 

The study in [25] compares the methods of Crank-Nicholson, McCormack, and Courant-

Friedrich-Lewy (explicit scheme). It shows the accuracy of the explicit scheme relative to 

other methods when solving discontinuous problems of vibrations of underground 

pipelines. In this study, the problem is solved by the finite difference method in an explicit 

scheme. Careful numerical calculations are performed to prevent unwanted vibrations near 

the discontinuity (deformation wavefront). 

The problem is solved using an explicit finite-difference scheme; Courant's conditions 

must be satisfied to obtain results that coincide with the exact solution. It was shown in [25] 

that the choice of the step ratio in coordinate and time in the form (5) for problem (1) 
allows one to obtain results that coincide with the exact solution. 

 

/ ,x t a       (6) 

 

where /a E F m   is the wave propagation velocity in the pipeline. We pass to 

dimensionless variables according to the following formulas: 
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Here xK D k  
; ( ) /M D H    ; / ( )c M K b  . 

With (6), we rewrite equation (1) in the form 
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where the ground motion gu
is given as  
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Elastically fixed boundary conditions are: 
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To solve equation (8), the method of finite differences of the second order of accuracy is 

used: 
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Let us substitute the approximations of the differentials of the function in time and 

coordinate (11) and (12) and the displacement function (13) into the differential equation 

(8), obtaining 
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Where, 
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(9) is written using (15)  
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Consider both ends of an elastically fixed underground pipeline with boundary 

conditions (10), a and b. Let us approximate the boundary conditions: 
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Then, for 0j   we have 
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The following system of equations is solved 
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After solving the system of algebraic equations (19), we determine the displacements in 
dimensionless form. 

Steel pipe characteristics are modulus of elasticity 𝐸 = 2.1 ∙ 1011 𝑁/𝑚2, outer diameter 

𝐷 = 0.61 𝑚, thickness 𝑠 = 0.01 𝑚, mass per unit length 𝑚 = 141.1 𝑘𝑔/𝑚, 
4

21 29·10 /NN k mk kN 
. 

Soil characteristics are elastic interaction coefficient 𝑘𝑥 = 0.5 ∙ 104 𝑘𝑁/𝑚3, viscous 

interaction coefficient 𝜇 = 100 𝑘𝑁 ∙ 𝑠/𝑚2, wave propagation velocity𝐶𝑝 = 2500 𝑚/𝑠, 

harmonic wave period 𝑇 = 0.2 𝑠, and wave amplitude 𝐴 = 0.004 𝑚. 
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3 Results and discussion 

The wave propagation in a steel pipeline is 5120 m/s, and in the soil, this velocity depends 

on soil type. Let us assume that a wave in soil moves with an apparent velocity of 2500 

m/s. 

Fig. 1 shows the change in the deformation of an underground main pipeline of a length 

of 1 km along the coordinate, both ends of which are fixed in the ground. From Fig. 1, a, it 

can be seen that at times t = 0.02 s, t = 0.06, t = 0.12 s, and t = 0.18 s, the wavefront in the 

pipeline reaches distances of 103.3, 309.8, 619.6, and 929.3 m, respectively. The maximum 

deformation at the wavefront in the pipeline is approximately two times less than the 

maximum deformation in soil. Figs. 1, a, and b show the change in the deformation of the 

underground pipeline along the coordinate under elastic interaction kх = 0.5 × 107 N/m3. It 
was found that with the wave propagation through an underground pipeline over time, the 

amplitude of oscillations at the wavefront in an underground pipeline slowly decreases. 

Before the front wave arrival at 929.4 m, the amplitude at the wavefront decreases by about 

5.7%. This is the phenomenon of the wavefront attenuation in a pipe with a zero coefficient 

of viscous resistance, which appeared due to an error in the computational scheme. 

 

  

Fig. 1. Change in underground pipeline deformation along the coordinate (a) and wavefront 
deformation of underground pipeline (b) at times t = 0.02, 0.06, 0.12, and 0.18 s 

 

Fig. 2 shows the change in the absolute (a) and relative (b) displacements of the 

underground pipeline along the coordinate for the points in time 0.02, 0.06, 0.12, and 0.18 

s. 

 

  

Fig. 2. Change in absolute (a) and relative (b) displacements of underground pipeline along 
coordinate 

 

As seen from Fig. 3, a, the wavefront in soil reaches the 450th-meter point at t = 0.18 s 

from the left end, with an increase in the coefficient of elasticity of interaction kх from 0.5 × 

104 to 4.5 × 104 kN / m3, the deformation of the underground pipeline approaches to the 

value of soil deformation. Fig. 3, b shows the change in deformation behind the wavefront 

in the pipeline at a value of the elastic interaction coefficient of 0.5 × 107 and 4 × 107 N / 

 

E3S Web of Conferences 401, 05046 (2023)

CONMECHYDRO - 2023
https://doi.org/10.1051/e3sconf/202340105046

6



m3. It can be seen here that the coefficient of elastic interaction affects not only the 

frequency of oscillations behind the wavefront of the pipeline but also the amplitude of 

deformation at the front of the pipeline.  

With an increase in the coefficient of elastic interaction, the value of the pipeline 

deformation at the wavefront decreases, and the oscillation frequency behind the pipeline 

wavefront increases. Immediately behind the wavefront in the pipeline, the soil resists so 

that the deformation at a certain distance behind the front changes sign, and gradually, with 

distance from the wavefront, the deformation oscillations damp out. At the same time, the 

wave in the soil propagates through the lateral surface of the pipeline and excites a wave in 

the pipeline. 

Here, with an increase in the value of the elastic resistance of soil, the frequency of 
oscillations behind the front increases. 

 

  

Fig. 3. Change in deformation of underground main pipeline along the coordinate with elastic 

properties of "pipe-soil" system interaction at t = 0.18 s: 1 – kx = 0.5 · 107 N / m3;  2 – kx = 4 107 N / 
m3; 3 - wave in soil 
 

Fig. 4 shows the change in relative displacements along the length of the underground main 

pipeline; the interaction between the pipeline and the ground is considered elastic. It can be 
seen here that the relative displacement reaches its maximum value at the wavefront in the 

soil. At 𝑡 = 0.18 s, the wave reaches the 450th meter of a 1000 m long underground 

pipeline. With an increase in the coefficient of elastic resistance, the maximum value of the 

relative displacement greatly decreases. Behind the wavefront of the pipeline, high-

frequency oscillations appear, the amplitude of which increases with distance. Fig. 4b 

shows the influence of the value of elastic resistance on the amplitude of oscillation of the 

relative displacement behind the wavefront in the pipeline. 

 

  
Fig. 4. Change of relative displacements along coordinate at t = 0.18s and µ = 0, N·s/m2:  
1 – kx = 0.5·107 N / m3; 2 – kx = 4·107 N / m3 
 

Figure 5, a, shows the change in the underground main pipeline with visco-elastic 

interaction properties. As seen, with distance, the amplitude at the wavefront in the pipeline 
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strongly decreases due to the viscosity of the interaction. Fig. 5, b shows a graph of the 

change in deformation at the wavefront in the pipeline according to the coefficient of 

viscosity of the interaction for four points in time. At viscous resistance values greater than 

100 kN·s/m2, the maximum value at the wavefront greatly decreases and is approximately 

zero (see Fig. 5, b). 

 

  

Fig. 5. Change in the deformation of an underground pipeline along the coordinate μ = 1 kN·s/m2,  
kх = 0.5 107 N/m3 

 

Figure 6 shows the case in which the reflected wavefront at the rigidly fixed end of the 

pipeline coincides with the wavefront in the pipeline. When these waves coincide, the 

maximum deformation value in the underground pipeline increases up to one and a half 

times. In Fig. 6, the maximum deformation value in the underground pipeline is one and a 

half times less than the maximum deformation in soil. This is due to the presence of the 

viscosity of the interaction and the error of the numerical scheme. To determine the time of 

the maximum value of the pipeline deformation, we use the following formula 

t=(2L+T·Cp)/(Cp+a) and obtain t = 0.32625 s. 

 

 

Fig. 6. Change in deformation of underground pipeline along the coordinate, at µ = 1 kN·s 

/ m2, kх = 0.5·107 N / m3, t=(2L+T·Cp)/(Cp+a), t = 0.32625 s. 
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Fig. 7. Change in maximum value of deformation (a) and relative displacement (b) 

according to coefficient of elastic interaction at contact 

 

Figure 7 shows the change in the maximum deformation in terms of the coefficient of 

elastic interaction for the points in time 0.12 and 0.18 s. Hence, it can be seen that with an 

increase in the coefficient of elastic interaction, the maximum deformation value in the 
underground pipeline tends to be the maximum value of deformation in soil. 

Figure 7b shows the maximum values of the relative displacement for different values 

of the coefficient of elastic interaction. As established, with an increase in the coefficient of 

elastic interaction from 0.5 × 104 to 4 × 104 kN / m3, the maximum relative displacement 

decreases threefold. 

 

  
Fig. 8. Change in deformation at wavefront in 
pipeline according to coefficient of elastic 
fastening of ends of underground main pipeline 

Fig. 9. Change in deformation at left end 
according to coefficient of elastic fastening of 
the ends of underground main pipeline  

 

Now consider an underground main pipeline when both ends are elastically anchored in the 

ground. The elastic fixing coefficients are denoted by kn1 and kn2. Let us assume that the 

coefficients of elastic interaction kn1 and kn2 are equal to each other and equal to kn. Fig. 8 

shows the influence of the compliance coefficient of fastenings on the deformation values 

at the wavefront in an underground main pipeline. With an increase in the fixing 

compliance coefficient, the deformation values at the wavefront increase linearly. It was 
found that the compliance coefficient affects the deformation values at the compliantly 

attached boundaries (Fig. 9). 

4 Conclusions 

When the ground moves in the form of a traveling sine wave, an underground pipeline 

undergoes deformations close to the deformation in soil. An increase in the elastic 

coefficient of interaction leads to an increase in deformation in the buried pipeline. 
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The reflection of the wavefront at the fixed end increases the deformation of the 

underground pipeline by approximately one and a half times. 

The compliance coefficient was found to affect the deformation values at the 

compliantly attached boundaries. 

The viscosity coefficient of the interaction contributes to the attenuation of the 

wavefront, depending on the value of the coefficient. 
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