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Abstract. The article presents a mathematical model of regulatory 
mechanisms of cardiac activity in the form of system of functional-

differential equations with delay arguments. With the use of reduction and 
scaling methods, the system of equations is reduced to the form of a 
functional-differential equation with delay argument. The equation was 
qualitatively analyzed. Equilibrium points are revealed and their stability is 
analyzed. As a result of a qualitative analysis, it was revealed that the 
mathematical model can reflect various modes of regulatory mechanisms 
of cardiac activity in normal conditions and in case of anomalies, the 
modes such as stationary, auto-oscillating, dynamic chaos, “black hole” 

and falling state. 

1 Introduction 

Today in the modern world, all areas of our activity, technique, technology, medicine, 
science and education, the sphere of economics, etc. are rapidly developing and improving. 

At the same time, a lot of research is also being carried out in medicine, new opportunities 

are opening up and modern methods of treatment are being developed. However, nowadays 

the number and types of diseases are gradually increasing. Doctors and researchers are 

actively continuing to research prevention methods and develop methods of treatment these 

modern diseases. But, if we look at the statistics of the causes of death of humanity from 

different cases, among them the first place is taken by heart diseases. This means that 

cardiologists must thoroughly research and find new opportunities to improve existing 

methods of preventing and treating heart disease. In this direction, it is possible to obtain 

better results by applying modern information and communication technologies in the study 

of cardiac activity and its regulatory mechanisms. By studying the regulatory mechanisms 

of the heart, it is possible to study the causes of cardiac dysfunctions and diseases. A 
number of scientific studies to study cardiac activity can be seen today. Scientific work [1] 

considered the problem of studying the physiology of the heart through mathematical 

modeling of the process of excitation-contraction of heart muscle fibers. In research [2] 

were created the model and computer simulation to study the dynamics of the adaptive 
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processes that manifest in a healthy cardiovascular system under the certain state of the 

body. The developed computer simulation can be used to continuous observation of the 

dynamics of the parameters of the cardiovascular system and the body, which cannot be 

measured in a direct experiment. As well as, in [3-5] studies cardiac activity is 

mathematically modeled at the cellular level, cardiomyocytes are considered as an excitable 

biological system and the mechanisms of cardiac activity are studied by means of 

mathematical modeling and computer simulation of the excitation of cardiomyocytes, 

various processes occurring in cardiomyocytes and cardiac contraction. 

This work also provides a study of the regulatory mechanisms of cardiac activity by 

means of mathematical modeling of the process of propagation of excitation waves along 

the cardiac conduction system. 
Mathematical model of regulatory mechanisms of cardiac activity. It is known that the 

heart is an organ that provides the human body with the necessary oxygen and nutrients 

through the circulatory system. If we look at the structure of the heart, it has right and left 

atriums and ventricles. In each cycle of the heart, as a result of the contraction of the 

muscles in these parts, the next portion of blood is delivered to the arterial vessel under a 

certain pressure.  Such activity of the heart is controlled by an excitation wave generated at 

the SA node in the upper part of the left ventricle and propagating to the heart components 

throughout the cardiac conduction system. The excitation wave from the SA node is 

transmitted to the atriums and the AV node, and then to the right and left ventricles via the 

bundle of His. It is possible to study the regulatory mechanisms of cardiac activity by 

mathematically modeling the excitation wave propagation throughout the cardiac 

conduction system and the excitation process of cardiac parts and nodes. We will consider 
the problem of mathematical modeling by expressing the propagation of the excitation 

wave between these sections by the following system of equations. 

In the mathematical representation of the process of wave propagation through the 

cardiac conducting system, it is necessary to take into account the spatio-temporal 

relationships. This leads to the use of functional-differential equations with delay [6-10]. 

More general laws of regulatory mechanisms of cardiac activity can be studied using the 

following system of equations in a simpler form [11]: 
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where , , 1,2,...,6i ia b i   - parameters representing the rates of increase and decrease of 

activity of excitation in the nodes and heart parts, i.e SA node, right and left ventricles, AV 
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node, right and left ventricles , respectively; , 1, 2, 3i i   - excitation inhibition 

coefficients at SA and AV nodes; h  - the delay time in the propagation of the excitation 

wave between the parts of the heart.  

The system of functional-differential equations with delays (1) represents the activity of 

the regulatory mechanisms of the process of propagation of the excitation wave in the heart. 

Determining the exact solutions of (1), the basic modes and properties derived from them is 

very complicated due to the nonlinearity of the considered equations and the large number 
of parameters and variables in it. In this case, the qualitative analysis of (1), the 

development and implementation of a method for obtaining numerical solutions on a 

computer is a complex issue. Therefore, (1) can be simplified by using the reduction 

method and scaling operations [11] and lead the following form. 
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where ( )Z   
- activity of cardiac conduction system; 

1, , , ,A B C D b  - nonnegative 

parameters. 

All parameters of (2) have a non-negative value. Because only in this case, the solutions 

of the equation representing the activity of cardiac conduction system can make biological 

sense. 

It is known that in the norm, cardiac activity consists of periodic oscillations and, in 

anomalous cases, non-periodic oscillations. We qualitatively analyze whether the solutions 

of (2) can represent the oscillating state in cardiac activity. It examines the existence, 

continuity, non-negativity, limitation and uniqueness of the solutions of (2), the existence of 

equilibrium points and their stability properties. A qualitative analysis of the properties of 
solutions to (2) is given in the work [12]. 

The presence of equilibrium points.  

Let’s determine the equilibrium points of (2). To do this, we assume that the state of the 

system does not change over time in the equilibrium state, that is, we define (2) as 
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0

dZ

d
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 in the equilibrium state. In this case, it is appropriate to denote 

0( ) ( 1)Z Z z    , and (2) can be written as: 
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Using (3), we find the equilibrium points. It can be seen that there always exists a trivial 

equilibrium point 
0 0z  . Since (3) is a complex and  nonlinear, it is impossible to 

determine its solutions. Therefore, to determine the number of non trivial solutions, we 

draw graphs by defining the right and left sides of (3) with separate functions. 
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It became known that in case of 0 0z 
 
it will be 

1 0F   and  in case of  0z 
 
it will be 

1 0F  . To draw a graph of a function 
1F , we determine the number of its extremums. It 

was found that the function 1F  reaches an extremum value at point 
20 6
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is satisfied, it follows that the function 
1F  has the third and fourth extremums in the 

following form: 
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Therefore, the graph of the function 
1F
 
can have three extremums. This leads to the 

presence of 4 positive equilibrium points , , , ( )O           (Fig. 1).   

Normally, in cardiac activity, only the SA node acts as a pacemaker, and in the case of 

dysfunction of this node (partial or complete blockade), the AV node, i.e., the second-order 

pacemaker, acts as a heart rhythm controller. The fact that the AV node acts as a pacemaker 

indicates an arrhythmia condition. The appearance of three extreme points on the graph of 

equation 
1F  corresponds to such a situation (Fig. 2). Since only the appearance of a single 

extreme in the graph corresponds to the normal functioning of the heart, we consider the 

case where (2) has two positive equilibrium points in addition to the trivial equilibrium 

point, i.e., the case where condition (5) is not satisfied. 

 

 

Fig. 1. Presence of equilibrium points 
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Fig. 2. Properties of equilibrium points in (1) 

 

Consider the cases where (2) has positive non trivial equilibrium points. To check the 

stability of the equilibrium point 0z , we construct a linear equation that is very close to the 

equilibrium point. To do this, we add ( )z  , which is very small in value to 
0z [1].  
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In the above expression, since the values of ( )z   and ( 1)z    are very small, their squares 

and higher levels, as well as the terms which include their multiplications, can be ignored, 

since their values are very close to 0. After doing some mathematical calculations and 

substitutions, we get the following form: 
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Equation (6) is a linearized equation around the equilibrium point of  (2).  

Stability of equilibrium points. To study the properties of solutions of (6), the Hayes criteria 

can be used  [6-8]. To do this, we construct the characteristic equation of (6). We enter the 

following notations: 
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Substituting the introduced notation (7) into (6), we obtain the following equation: 
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(8) is a characteristic equation of (6) linearized around the equilibrium point. We examine 

the properties of the solutions of this characteristic equation (8) according to the three 

conditions of the Hayes criterion and obtain the following generalized condition (9). Every 

equilibrium point that satisfies this inequality is stable. 
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Due to the complexity of expression (3), it cannot be solved analytically. Therefore, in 

particular, their stability was checked by calculating the numerical values of the equilibrium 

point 0z
 
at the values of the parameters 

10.13; 0.32; 0.31; 0.1B C D b    . At different 

values of parameter A , according to condition (9), the equilibrium point   between 

points ,   ( O    ) is always unstable. Therefore, it repels solutions around itself 

and it became known that equilibrium point   is stable, that is, it attracts the surrounding 

solutions (Fig. 2). This, in turn, leads to occurrence of stationary solutions of (2) of 

regulatory mechanisms of cardiac activity. Therefore, the equilibrium point   is a 

functional attractor. It can be seen that the solutions of (2) are separated from point A in 

space of attractors O andВ . Sometimes, depending on the parameter values, the 

equilibrium point   
loses its stability and leads to the appearance around it of periodic 

oscillatory solutions of the Poincare type. This, in turn, means that (2) can represent the 

periodic oscillation activity of the heart. 

3 Results and discussion 

The stability of the equilibrium points at certain values of the parameters was checked. 

According to him, equilibrium point  is always unstable. Initially, the equilibrium point 

  is stable and with increasing the value of parameter A, a transition to an unstable 

position was observed in this equilibrium point.  

As a result of numerical analysis on a computer, the presence of regular or non-regular 

oscillatory solutions in the space of attractor В  was found due to the loss of stability of the 

equilibrium point  , and sometimes cases of a sharp falling in non-regular solutions to 0 

were identified [9, 10]. 
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4 Conclusions 

Summarizing the above considerations, it can be noted that the studied equation (2) has the 

ability to express a normal state of heart (solutions of periodic oscillations), arrhythmia 

(solutions with irregular oscillations) and sudden cardiac death (sometimes sudden drop 

solutions with irregular oscillations to 0 - "the black hole" effect). So, (2) can be used for 

study the regulatory mechanisms of cardiac activity.  
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