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Abstract. The automated generation of class diagrams is a crucial task in 

software engineering, facilitating the understanding, analysis, and 

documentation of complex software systems. Traditional manual approaches are 

time and energy consuming, error-prone, and lack consistency. To address these 

challenges, this research presents an automated proposed approach that utilizes 

Graph Neural Networks (GNNs), a machine learning algorithm, to generate 

class diagrams from source code within the context of Model Driven 

Architecture (MDA) and reverse engineering. A comprehensive case study is 

conducted to compare the results obtained from the automated approach with 

manually created class diagrams. The GNN model demonstrates high accuracy 

in capturing the system's structure, associations, and relationships. Notably, the 

automated approach significantly reduces the time required for class diagram 

generation, leading to substantial time and energy savings. By advancing 

automated software documentation, this research contributes to more efficient 

software engineering practices. It promotes consistency, eliminates human 

errors, and enables software engineers to focus on higher-value tasks. Overall, 

the proposed approach showcases the potential of GNNs in automating class 

diagram generation and its practical benefits for software development and 

documentation. 

 

Index Terms—MDA, ML, GNN, AI, energy, class diagrams, source code, reverse 

engineering.   

1 Introduction  

In modern software development, understanding the structure and dependencies of a 

software system is crucial for effective maintenance, evolution, and collaboration among 

developers. Class diagrams, which visually represent classes, attributes, methods, and their 

relationships, play a vital role in capturing the essence of a software system's architecture. 

However, creating class diagrams manually from complex and extensive source code can 

be time and energy-consuming. [1] 

To address this challenge, researchers have turned to the power of Artificial Intelligence 

(AI) and machine learning to automate the process of generating class diagrams from 
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source code. Among the emerging AI techniques, Graph Neural Networks (GNNs) have 

shown promise in effectively analyzing graph-structured data and capturing the inherent 

relationships within. Several studies have been performed on the reverse engineering of 

UML diagrams. 

In [2], the authors propose a method based on Petri nets that can generate a sequence 

diagram understanding the behavior of an object-oriented system using reverse engineering. 

In this paper [3] researchers represent a novel method for extracting UML2 state machine 

diagrams from object-oriented java source code using Nested choice patterns. Also in [4] a 

strategy is shown to investigate creative approaches to instruction and evaluation that 

encourage students to learn programming effectively, according to the suggested technique, 

when a user inserts source code into a visualization tool, it will be transformed into a class 

diagram and a sequence diagram based on what the user specifies.  Also, an algorithm was 

discussed that creates suitable class diagrams and sequence diagrams for user-entered 

object-oriented language source code. To accomplish the reverse engineering aim of 

converting source code into design documents. 

In [5] the research's goal was to create a tool that can automatically distinguish between 

UML class diagrams and other types of class diagrams. Earlier studies classified class 

diagrams using machine learning techniques. As a result, they must recognize picture 

attributes and look into how these aspects affect the categorization issue in the UML class 

diagrams. 

The authors in [6], suggest an automatic classifier. They demonstrate how supervised 

machine learning methods were used to create such a classifier. They examine the elements 

that help categorize FwCD and RECD throughout its building. After examining other 

machine-learning techniques, they discover that the Random Forest approach is the best 

appropriate algorithm for our objective.  

Also in [7], the research's goal was to create a tool that can automatically identify between 

UML class diagrams and other types of diagrams. Earlier they classified class diagrams 

using machine learning techniques. As a result, they recognize image attributes and look 

into how these aspects affect the categorization issue in the UML class diagrams. In the 

area of deep learning, they created a novel method for automatically identifying class 

diagrams. This method uses convolutional neural networks. 

In [8]. The authors proposed representing a code snippet as a set of paths in its AST. They 

have used the AST paths with Conditional Random Fields (CRF) and evaluated the 

approach on method naming. 

Our research aims to fill the gap between manual class diagram creation and the need for 

automated, efficient, and accurate approaches. It addresses the challenges of time and 

energy-consuming manual efforts, human errors, and inconsistencies in manual class 

diagrams. Automating the process using GNNs, offers a more reliable and consistent 

solution [5]. 

The value of this research lies in its practical applicability and the benefits it offers to the 

software engineering community. 

The article is organized as follows, Section 2 describes our methodology, in Section 3 we 

display a case study that illustrates our methodology, the results and discussion are 

presented in Section 4, and finally, the conclusion is shown in Section 5.   

2 Methodology 

MDA is a recently widely used technique for developing software that is based on 

modeling and transformations. Modeling the software system is the primary activity that 

drives the MDA software creation process. In MDA, models and transformations serve as 
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the main resources. A set of rules referred to as transformation rules are used to transform 

models from source to target. [9] 

Reverse engineering is the act of examining a system to determine its components and how 

they interact, then modeling those parts to represent the system in a different way or at a 

higher degree of abstraction.  

 

Fig. 1. Reverse engineering in MDA’s approach. 

The forward engineering transformation method and the reverse engineering transformation 

approach are depicted in Figure 1. The illustration depicts software transformations that 

immediately shift objects on the left to objects on the right in the directions where they are 

located. Model transformation involves the procedure that converts one model of a system 

into another [10]. 

Reverse engineering is required when learning about a software system would be time-

consuming owing to incomplete, outdated documentation, the complexity of the system, 

and the maintainer's lack of expertise, which is frequently used to comprehend 

the structural design and maintain obsolete systems. Reverse engineering is used to find 

missing data, enhance or offer documentation, find negative effects, reuse parts, and lessen 

maintenance requirements. [11] 

Graph neural networks (GNNs) are an effective method for solving a variety of NLP issues.  

GNNs have been used to complete tasks including relation extraction, user geographical 

location, semantic machine translation, and text categorization. GNNs have recently been 

used for question-answering as well. [12] 

Our methodology is shown in Figure 2. We used reverse engineering, starting from the 

source code and respecting the MDA principles and machine learning algorithm to obtain 

the class diagram at the PIM level. By utilizing the code's graph representation, Graph 

Neural Networks (GNNs) can assist with generating a class diagram from the source code. 

 
 
 
 
 
 
 
 
 

Fig. 2. The proposed methodology. 

Source code 

Class diagram 

Reverse engineering Graph Neural Networks 

PIM level 

PSM level 
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3 Case study 

Suppose a software development company is engaged in a significant project with a 

complicated codebase. The project's insufficient documentation makes it difficult for 

developers to understand the relationships between the various pieces of code. Due to the 

longer development cycles, debugging efforts, and knowledge transfer, there is an increase 

in energy consumption. [13] 

Energy-saving advantages come from using reverse engineering in MDA and applying 

GNNs to automatically create a class diagram from the source code. GNNs are trained on 

annotated datasets, learning to understand the source code’s structure, relationships, and 

context. [14] 

We use a labeled dataset consisting of pairs of source code graphs and the related class 

diagrams to train a GNN model. The GNN gains the ability to understand complex class 

relationships and interactions 

We utilize the trained GNN model to produce class diagrams for the targeted codebase. The 

software's structure, including the class hierarchy, attributes, methods, and connections, is 

represented visually by the class diagrams. 

In this case study, we focus on school management developed in Java. Our objective is to 

automatically generate a class diagram for the application using GNNs. The study aims to 

evaluate the effectiveness and accuracy of the GNN-based approach in capturing the 

system's structure and relationships. 

- Data collection: the code base consists of Java classes, packages, and associated 

dependencies, which form the basis for our analysis. 

- Source code analysis: we thoroughly analyze the application source code to gain 

insights into its architecture and design. We identify classes, interfaces, attributes, 

methods, and their relationships. We also examine the use of inheritance, composition, 

and dependency patterns within the system. 

- Graph construction: Based on the source code analysis, we construct a graph 

representation of the system. Each class is represented as a node, and the relationships 

between classes, such as inheritance, associations, and dependencies, are captured as 

edges in the graph. 

- Feature extraction: we extract relevant features from the graph representation. Node 

features include class names, attribute types, and method signatures. Edge features 

represent the type of relationship between classes, such as association, inheritance, or 

dependency. 

- Training data preparation: The manually created class diagram is used as the ground 

truth for the labeled dataset. We prepare the training data by pairing the graph 

representation of the application source code with the corresponding manual class 

diagram. 

- GNN Model Training: We train a GNN model using the labeled dataset. The GNN 

model learns to predict class diagrams based on the input graph structure and features. 

For this task, we employ graph neural network architectures such as Graph 

Convolutional Networks (GCNs) or Graph Attention Networks (GATs). 

- Class diagram generation: based on the output of the GNN model, a class diagram is 

generated automatically. The node representations obtained from the GNN model 

correspond to the classes in the diagram, and the edges represent the relationships 

between the classes, such as inheritance, associations, and dependencies. The generated 

class diagram provides a visual representation of the system's structure. 
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4 Results and discussion 

By employing reverse engineering in MDA’s approach and utilizing GNNs for class 

diagram generation, the software development company achieves improved energy 

efficiency by streamlining the understanding of the codebase, reducing development time, 

optimizing debugging efforts, facilitating knowledge transfer, and promoting efficient 

software maintenance practices [15]. 

The comparison between the automated approach and manual class diagrams shown in 

Table 1, revealed several interesting insights. Overall, we found that the automated 

approach was able to capture a significant portion of the system's structure, associations, 

and relationships accurately. The generated class diagrams closely resembled the manually 

created ones in terms of class hierarchy, attribute associations, and method relationships 

[16]. 

Our automated approach showcased several practical benefits. The most significant 

advantage was the substantial time savings it offered compared to manual class diagram 

creation. Manually creating class diagrams for a system of the size and complexity, would 

typically require weeks of effort from domain experts. In contrast, the automated approach 

using GNNs was able to generate the class diagrams in a matter of hours. This time savings 

can significantly expedite the software understanding and documentation process, allowing 

developers to focus on other critical tasks [17]. 

Furthermore, the automated approach mitigated the risk of human error associated with the 

creation of manual class diagrams. Manually creating class diagrams requires careful 

attention to detail, and mistakes can easily occur, especially when dealing with complex 

codebases. Automating the process reduces the chances of inaccuracies and inconsistencies 

in the generated class diagrams, ensuring a more reliable and consistent representation of 

the software system. [18-21]. 

Table 1. Comparison between automatic and manual approach. 

Aspect Automated Approach using GNNs Manual Class Diagram Creation 

Accuracy 

 

High accuracy in capturing the system's 

structure, associations, and relationships. 

Some discrepancies may exist, but overall, 

provides a reliable representation. 

Relies on the expertise of domain experts, 

but human errors can occur. Inconsistencies 

in capturing the system's structure, 

associations, or relationships may arise. 

Time Required 

 

Significantly reduces the time required for 

class diagram generation. Generates class 

diagrams in a matter of hours. 

A time-consuming process that can take 

weeks or longer depending on the 

complexity of the system. 

Effort Required 

 

Drastically reduces the effort needed for 

class diagram generation. Automated 

process requires minimal manual 

intervention. 

Requires significant effort from domain 

experts who manually analyze the source 

code and construct the class diagrams. 

 

Risk of Human 

Error 

 

Reduces the risk of human error associated 

with manual class diagram creation. 

 

Human errors can occur during the manual 

process, impacting the accuracy and 

consistency of the class diagrams. 

Consistency 

and Reliability 

 

Provides a consistent and reliable 

representation of the software system. 

 

Consistency may vary depending on the 

expertise and interpretations of different 

domain experts involved in the manual 

process. 

 

Applicability 

 

 

Applicable to various software systems and 

programming languages. Enables reverse 

engineering, system comprehension, and 

architectural analysis. 

Applicable to any software system, but the 

efficiency and accuracy depend on the 

expertise and effort of domain experts. 
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5 Conclusion 

There are many benefits of using reverse engineering and GNNs for class diagram 

generation in the software project like reduced development time, with an automatically 

generated class diagram, developers can quickly grasp the code base's structure, reducing 

the time and energy spent on understanding the system's intricacies. Also efficient 

debugging, and maintenance, the class diagram provides a visual aid for developers to 

locate and troubleshoot issues, minimizing debugging efforts and reducing energy 

consumption associated with resolving software bugs, and facilitating knowledge transfer. 

The generated class diagram serves as a valuable documentation artifact, aiding in 

knowledge transfer among team members and reducing the energy required for on boarding 

and collaboration. 

Finally, improved code understanding and the visual representation of the source code 

structure enhance developers' comprehension, enabling them to make informed design 

decisions and reducing the energy spent on rework and refactoring. [22] 

In conclusion, this study proposes a novel method for automatically producing class 

diagrams from source code using Graph Neural Networks. The suggested method 

effectively substitutes time-energy-consuming and error-prone manual class diagram 

construction work by utilizing AI and reverse engineering approaches. 

To increase developers' efficiency and deepen their understanding of software systems, the 

article intends to encourage higher investigation into and usage of automated approaches in 

software engineering. 
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