

A methodology of automatic class

diagrams generation from source

code using Model-Driven

Architecture and Machine Learning

to achieve Energy Efficiency
Abir Sajji1, Yassine Rhazali2, Youssef Hadi1

1Computer Research Laboratory, Faculty of Science, Ibn Tofail University, Kenitra, Morocco;
 ORCID: 0000-0003-3672-947X
2 Information and Communication Systems Engineering Research Group, Higher School of

Technology, Moulay Ismail University, Meknes, Morocco;

Abstract. The automated generation of class diagrams is a crucial task in

software engineering, facilitating the understanding, analysis, and

documentation of complex software systems. Traditional manual approaches are

time and energy consuming, error-prone, and lack consistency. To address these

challenges, this research presents an automated proposed approach that utilizes

Graph Neural Networks (GNNs), a machine learning algorithm, to generate

class diagrams from source code within the context of Model Driven

Architecture (MDA) and reverse engineering. A comprehensive case study is

conducted to compare the results obtained from the automated approach with

manually created class diagrams. The GNN model demonstrates high accuracy

in capturing the system's structure, associations, and relationships. Notably, the

automated approach significantly reduces the time required for class diagram

generation, leading to substantial time and energy savings. By advancing

automated software documentation, this research contributes to more efficient

software engineering practices. It promotes consistency, eliminates human

errors, and enables software engineers to focus on higher-value tasks. Overall,

the proposed approach showcases the potential of GNNs in automating class

diagram generation and its practical benefits for software development and

documentation.

Index Terms—MDA, ML, GNN, AI, energy, class diagrams, source code, reverse

engineering.

1 Introduction

In modern software development, understanding the structure and dependencies of a

software system is crucial for effective maintenance, evolution, and collaboration among

developers. Class diagrams, which visually represent classes, attributes, methods, and their

relationships, play a vital role in capturing the essence of a software system's architecture.

However, creating class diagrams manually from complex and extensive source code can

be time and energy-consuming. [1]

To address this challenge, researchers have turned to the power of Artificial Intelligence

(AI) and machine learning to automate the process of generating class diagrams from

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons

Attribution License 4.0 (https://creativecommons.org/licenses/by/4.0/).

E3S Web of Conferences 412, 01002 (2023)
ICIES’11 2023

https://doi.org/10.1051/e3sconf/202341201002

source code. Among the emerging AI techniques, Graph Neural Networks (GNNs) have

shown promise in effectively analyzing graph-structured data and capturing the inherent

relationships within. Several studies have been performed on the reverse engineering of

UML diagrams.

In [2], the authors propose a method based on Petri nets that can generate a sequence

diagram understanding the behavior of an object-oriented system using reverse engineering.

In this paper [3] researchers represent a novel method for extracting UML2 state machine

diagrams from object-oriented java source code using Nested choice patterns. Also in [4] a

strategy is shown to investigate creative approaches to instruction and evaluation that

encourage students to learn programming effectively, according to the suggested technique,

when a user inserts source code into a visualization tool, it will be transformed into a class

diagram and a sequence diagram based on what the user specifies. Also, an algorithm was

discussed that creates suitable class diagrams and sequence diagrams for user-entered

object-oriented language source code. To accomplish the reverse engineering aim of

converting source code into design documents.

In [5] the research's goal was to create a tool that can automatically distinguish between

UML class diagrams and other types of class diagrams. Earlier studies classified class

diagrams using machine learning techniques. As a result, they must recognize picture

attributes and look into how these aspects affect the categorization issue in the UML class

diagrams.

The authors in [6], suggest an automatic classifier. They demonstrate how supervised

machine learning methods were used to create such a classifier. They examine the elements

that help categorize FwCD and RECD throughout its building. After examining other

machine-learning techniques, they discover that the Random Forest approach is the best

appropriate algorithm for our objective.

Also in [7], the research's goal was to create a tool that can automatically identify between

UML class diagrams and other types of diagrams. Earlier they classified class diagrams

using machine learning techniques. As a result, they recognize image attributes and look

into how these aspects affect the categorization issue in the UML class diagrams. In the

area of deep learning, they created a novel method for automatically identifying class

diagrams. This method uses convolutional neural networks.

In [8]. The authors proposed representing a code snippet as a set of paths in its AST. They

have used the AST paths with Conditional Random Fields (CRF) and evaluated the

approach on method naming.

Our research aims to fill the gap between manual class diagram creation and the need for

automated, efficient, and accurate approaches. It addresses the challenges of time and

energy-consuming manual efforts, human errors, and inconsistencies in manual class

diagrams. Automating the process using GNNs, offers a more reliable and consistent

solution [5].

The value of this research lies in its practical applicability and the benefits it offers to the

software engineering community.

The article is organized as follows, Section 2 describes our methodology, in Section 3 we

display a case study that illustrates our methodology, the results and discussion are

presented in Section 4, and finally, the conclusion is shown in Section 5.

2 Methodology

MDA is a recently widely used technique for developing software that is based on

modeling and transformations. Modeling the software system is the primary activity that

drives the MDA software creation process. In MDA, models and transformations serve as

2

E3S Web of Conferences 412, 01002 (2023)
ICIES’11 2023

https://doi.org/10.1051/e3sconf/202341201002

the main resources. A set of rules referred to as transformation rules are used to transform

models from source to target. [9]

Reverse engineering is the act of examining a system to determine its components and how

they interact, then modeling those parts to represent the system in a different way or at a

higher degree of abstraction.

Fig. 1. Reverse engineering in MDA’s approach.

The forward engineering transformation method and the reverse engineering transformation

approach are depicted in Figure 1. The illustration depicts software transformations that

immediately shift objects on the left to objects on the right in the directions where they are

located. Model transformation involves the procedure that converts one model of a system

into another [10].

Reverse engineering is required when learning about a software system would be time-

consuming owing to incomplete, outdated documentation, the complexity of the system,

and the maintainer's lack of expertise, which is frequently used to comprehend

the structural design and maintain obsolete systems. Reverse engineering is used to find

missing data, enhance or offer documentation, find negative effects, reuse parts, and lessen

maintenance requirements. [11]

Graph neural networks (GNNs) are an effective method for solving a variety of NLP issues.

GNNs have been used to complete tasks including relation extraction, user geographical

location, semantic machine translation, and text categorization. GNNs have recently been

used for question-answering as well. [12]

Our methodology is shown in Figure 2. We used reverse engineering, starting from the

source code and respecting the MDA principles and machine learning algorithm to obtain

the class diagram at the PIM level. By utilizing the code's graph representation, Graph

Neural Networks (GNNs) can assist with generating a class diagram from the source code.

Fig. 2. The proposed methodology.

Source code

Class diagram

Reverse engineering Graph Neural Networks

PIM level

PSM level

3

E3S Web of Conferences 412, 01002 (2023)
ICIES’11 2023

https://doi.org/10.1051/e3sconf/202341201002

3 Case study

Suppose a software development company is engaged in a significant project with a

complicated codebase. The project's insufficient documentation makes it difficult for

developers to understand the relationships between the various pieces of code. Due to the

longer development cycles, debugging efforts, and knowledge transfer, there is an increase

in energy consumption. [13]

Energy-saving advantages come from using reverse engineering in MDA and applying

GNNs to automatically create a class diagram from the source code. GNNs are trained on

annotated datasets, learning to understand the source code’s structure, relationships, and

context. [14]

We use a labeled dataset consisting of pairs of source code graphs and the related class

diagrams to train a GNN model. The GNN gains the ability to understand complex class

relationships and interactions

We utilize the trained GNN model to produce class diagrams for the targeted codebase. The

software's structure, including the class hierarchy, attributes, methods, and connections, is

represented visually by the class diagrams.

In this case study, we focus on school management developed in Java. Our objective is to

automatically generate a class diagram for the application using GNNs. The study aims to

evaluate the effectiveness and accuracy of the GNN-based approach in capturing the

system's structure and relationships.

- Data collection: the code base consists of Java classes, packages, and associated

dependencies, which form the basis for our analysis.

- Source code analysis: we thoroughly analyze the application source code to gain

insights into its architecture and design. We identify classes, interfaces, attributes,

methods, and their relationships. We also examine the use of inheritance, composition,

and dependency patterns within the system.

- Graph construction: Based on the source code analysis, we construct a graph

representation of the system. Each class is represented as a node, and the relationships

between classes, such as inheritance, associations, and dependencies, are captured as

edges in the graph.

- Feature extraction: we extract relevant features from the graph representation. Node

features include class names, attribute types, and method signatures. Edge features

represent the type of relationship between classes, such as association, inheritance, or

dependency.

- Training data preparation: The manually created class diagram is used as the ground

truth for the labeled dataset. We prepare the training data by pairing the graph

representation of the application source code with the corresponding manual class

diagram.

- GNN Model Training: We train a GNN model using the labeled dataset. The GNN

model learns to predict class diagrams based on the input graph structure and features.

For this task, we employ graph neural network architectures such as Graph

Convolutional Networks (GCNs) or Graph Attention Networks (GATs).

- Class diagram generation: based on the output of the GNN model, a class diagram is

generated automatically. The node representations obtained from the GNN model

correspond to the classes in the diagram, and the edges represent the relationships

between the classes, such as inheritance, associations, and dependencies. The generated

class diagram provides a visual representation of the system's structure.

4

E3S Web of Conferences 412, 01002 (2023)
ICIES’11 2023

https://doi.org/10.1051/e3sconf/202341201002

4 Results and discussion

By employing reverse engineering in MDA’s approach and utilizing GNNs for class

diagram generation, the software development company achieves improved energy

efficiency by streamlining the understanding of the codebase, reducing development time,

optimizing debugging efforts, facilitating knowledge transfer, and promoting efficient

software maintenance practices [15].

The comparison between the automated approach and manual class diagrams shown in

Table 1, revealed several interesting insights. Overall, we found that the automated

approach was able to capture a significant portion of the system's structure, associations,

and relationships accurately. The generated class diagrams closely resembled the manually

created ones in terms of class hierarchy, attribute associations, and method relationships

[16].

Our automated approach showcased several practical benefits. The most significant

advantage was the substantial time savings it offered compared to manual class diagram

creation. Manually creating class diagrams for a system of the size and complexity, would

typically require weeks of effort from domain experts. In contrast, the automated approach

using GNNs was able to generate the class diagrams in a matter of hours. This time savings

can significantly expedite the software understanding and documentation process, allowing

developers to focus on other critical tasks [17].

Furthermore, the automated approach mitigated the risk of human error associated with the

creation of manual class diagrams. Manually creating class diagrams requires careful

attention to detail, and mistakes can easily occur, especially when dealing with complex

codebases. Automating the process reduces the chances of inaccuracies and inconsistencies

in the generated class diagrams, ensuring a more reliable and consistent representation of

the software system. [18-21].

Table 1. Comparison between automatic and manual approach.

Aspect Automated Approach using GNNs Manual Class Diagram Creation

Accuracy

High accuracy in capturing the system's

structure, associations, and relationships.

Some discrepancies may exist, but overall,

provides a reliable representation.

Relies on the expertise of domain experts,

but human errors can occur. Inconsistencies

in capturing the system's structure,

associations, or relationships may arise.

Time Required

Significantly reduces the time required for

class diagram generation. Generates class

diagrams in a matter of hours.

A time-consuming process that can take

weeks or longer depending on the

complexity of the system.

Effort Required

Drastically reduces the effort needed for

class diagram generation. Automated

process requires minimal manual

intervention.

Requires significant effort from domain

experts who manually analyze the source

code and construct the class diagrams.

Risk of Human

Error

Reduces the risk of human error associated

with manual class diagram creation.

Human errors can occur during the manual

process, impacting the accuracy and

consistency of the class diagrams.

Consistency

and Reliability

Provides a consistent and reliable

representation of the software system.

Consistency may vary depending on the

expertise and interpretations of different

domain experts involved in the manual

process.

Applicability

Applicable to various software systems and

programming languages. Enables reverse

engineering, system comprehension, and

architectural analysis.

Applicable to any software system, but the

efficiency and accuracy depend on the

expertise and effort of domain experts.

5

E3S Web of Conferences 412, 01002 (2023)
ICIES’11 2023

https://doi.org/10.1051/e3sconf/202341201002

5 Conclusion

There are many benefits of using reverse engineering and GNNs for class diagram

generation in the software project like reduced development time, with an automatically

generated class diagram, developers can quickly grasp the code base's structure, reducing

the time and energy spent on understanding the system's intricacies. Also efficient

debugging, and maintenance, the class diagram provides a visual aid for developers to

locate and troubleshoot issues, minimizing debugging efforts and reducing energy

consumption associated with resolving software bugs, and facilitating knowledge transfer.

The generated class diagram serves as a valuable documentation artifact, aiding in

knowledge transfer among team members and reducing the energy required for on boarding

and collaboration.

Finally, improved code understanding and the visual representation of the source code

structure enhance developers' comprehension, enabling them to make informed design

decisions and reducing the energy spent on rework and refactoring. [22]

In conclusion, this study proposes a novel method for automatically producing class

diagrams from source code using Graph Neural Networks. The suggested method

effectively substitutes time-energy-consuming and error-prone manual class diagram

construction work by utilizing AI and reverse engineering approaches.

To increase developers' efficiency and deepen their understanding of software systems, the

article intends to encourage higher investigation into and usage of automated approaches in

software engineering.

References

[1] Mukhtar, M. I., & Galadanci, B. S. (2018). Automatic code generation from UML

diagrams: the state-of-the-art. Science World Journal, 13(4), 47-60.

[2] Baidada, C., El Mahi, B., & Jakimi, A. Towards the reverse engineering of UML
sequence diagrams for multithreaded java software.

[3] Aabidi, M. H., El Mahi, B., Baidada, C., Jakimi, A., & Ammar, H. (2017). Benefits
of reverse engineering technologies in software development makerspace. In ITM
Web of Conferences (Vol. 13, p. 01028). EDP Sciences.

[4] Singh, K. (2020). Transformation of source code into UML diagrams through
visualization tool. International Journal of Advanced Science and
Technology, 29(8), 4861-1114.

[5] Gosala, B.; Chowdhuri, S.R.; Singh, J.; Gupta, M.; Mishra, A. Automatic,
Classification of UML Class Diagrams Using Deep Learning Technique:

Convolutional Neural Network. Appl. Sci. 2021, 11, 4267.

[6] Osman, M. H., Ho-Quang, T., & Chaudron, M. (2018, August). An automated
approach for classifying reverse-engineered and forward-engineered UML class
diagrams. In 2018 44th Euromicro Conference on Software Engineering and
Advanced Applications (SEAA) (pp. 396-399). IEEE.

[7] Mangaroliya, K., & Patel, H. (2020). Classification of reverse-engineered class
diagram and forward-engineered class diagram using machine learning. arXiv
preprint arXiv:2011.07313.

[8] Alon, U., Zilberstein, M., Levy, O., & Yahav, E. (2018). Code2vec: learning
distributed representations of code. CoRR. arXiv preprint arXiv:1803.09473.

[9] Jing, D., Yang, H., & Hakeem, H. (2014, September). Using abstraction in

6

E3S Web of Conferences 412, 01002 (2023)
ICIES’11 2023

https://doi.org/10.1051/e3sconf/202341201002

MDA-based reverse engineering for creative evolution. In 2014 20th International
Conference on Automation and Computing (pp. 67-72). IEEE.

[10] Sabir, U., Azam, F., & Anwar, M. W. (2017, December). A comprehensive
investigation of model-driven architecture (MDA) for reverse engineering
In Proceedings of the 2017 International Conference on Software and e
Business (pp. 43-48).

[11] Aabidi, M. H., El Mahi, B., Baidada, C., Jakimi, A., & Ammar, H. (2017).
Benefits of reverse engineering technologies in software development makerspace.
In ITM Web of Conferences (Vol. 13, p. 01028). EDP Sciences.

[12] https://www.simplilearn.com/what-is-graph-neural-network-article

[13] Kehagias, D., Jankovic, M., Siavvas, M., & Gelenbe, E. (2021). Investigating
the interaction between energy consumption, quality of service, reliability, security,
and maintainability of computer systems and networks. SN Computer
Science, 2(1), 23.

[14] Zhou, J., Cui, G., Hu, S., Zhang, Z., Yang, C., Liu, Z., ... & Sun, M. (2020).
Graph neural networks: A review of methods and applications. AI open, 1, 57- 81.
[15] Wu, Z., Pan, S., Long, G., Jiang, J., & Zhang, C. (2019). Graph wavenet for
deep spatial-temporal graph modeling. arXiv preprint arXiv:1906.00121.
[16] ANDRE, P., GUERIN, A., ROZEN, A., & GICQUEL, A. Raffinement de
protocoles de communication par transformation de modèle.
[17] Bergström, G., Hujainah, F., Ho-Quang, T., Jolak, R., Rukmono, S. A.,
Nurwidyantoro, A., & Chaudron, M. R. (2022). Evaluating the layout quality of UML
class diagrams using machine learning. Journal of Systems and Software, 192,
111413.
[18] Stikkolorum, D. R., van der Putten, P., Sperandio, C., & Chaudron, M. (2019).
Towards Automated Grading of UML Class Diagrams with Machine
Learning. BNAIC/BENELEARN, 2491.
[19] Ciccozzi, F., Malavolta, I., & Selic, B. (2019). Execution of UML models: a
systematic review of research and practice. Software & Systems Modeling, 18,
2313-2360.
[20] Abdelnabi, E. A., Maatuk, A. M., & Hagal, M. (2021, May). Generating uml
class diagram from natural language requirements: A survey of approaches and
techniques. In 2021 IEEE 1st International Maghreb Meeting of the Conference on
Sciences and Techniques of Automatic Control and Computer Engineering MI-
STA (pp. 288-293). IEEE.
[21] Abdelnabi, E. A., Maatuk, A. M., Abdelaziz, T. M., & Elakeili, S. M. (2020,
December). Generating UML class diagram using NLP techniques and heuristic
rules. In 2020 20th International Conference on Sciences and Techniques of
Automatic Control and Computer Engineering (STA) (pp. 277-282). IEEE.
[22] Ciancarini, P., Ergasheva, S., Kholmatova, Z., Kruglov, A., Succi, G., Vasquez,
X., & Zuev, E. (2020). Analysis of energy consumption of software development
process entities. Electronics, 9(10), 1678.

7

E3S Web of Conferences 412, 01002 (2023)
ICIES’11 2023

https://doi.org/10.1051/e3sconf/202341201002

https://www.simplilearn.com/what-is-graph-neural-network-article

